题目内容
3.某个体服装店经营某种服装,一周内获纯利y(元)与该周每天销售这种服装的件数x之间的一组数据如表:| x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
(1)求$\overline{x}$,$\overline{y}$;
(2)纯利润y与每天销售件数x之间线性相关,求出线性回归方程.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.
分析 (1)根据题中数据计算$\overline{x}$、$\overline{y}$的值;
(2)根据公式计算回归系数,写出线性回归方程即可.
解答 解:(1)根据题中数据计算$\overline{x}$=$\frac{1}{7}$×(3+4+5+6+7+8+9)=6,
$\overline{y}$=$\frac{1}{7}$×(66+69+73+81+89+90+91)≈79.86…(6分)
(2)根据已知$\sum_{i=1}^{7}$${{x}_{i}}^{2}$=280,$\sum_{i=7}^{7}$${{y}_{i}}^{2}$=45 309,
$\sum_{i=1}^{7}$xiyi=3 487,
利用已知数据可求得$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=4.75,
$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$=79.86-4.75×6=51.36,
所以线性回归方程为$\stackrel{∧}{y}$=4.75x+51.36…(12分)
点评 本题考查了线性回归方程的求法问题,是基础题目.
练习册系列答案
相关题目
13.已知函数f(x)=sin(ωx+φ),ω>0,|φ|<$\frac{π}{2}$的部分图象如图所示,则f($\frac{π}{2}$)为( )

| A. | 1 | B. | -1 | C. | $\frac{\sqrt{2}}{2}$ | D. | -$\frac{\sqrt{2}}{2}$ |
14.已知复数z1=$\frac{3+i}{1-i}$的实部为a,复数z2=i(2+i)的虚部为b,复数z=b+ai的共轭复数在复平面内的对应点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
18.将号码分别为1,2,3,4的四个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个小球,其号码为a,放回后,乙从此袋中再摸出一个小球,其号码为b,则使不等式a-2b+4<0成立的事件发生的概率为( )
| A. | $\frac{1}{8}$ | B. | $\frac{3}{16}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
12.已知x与y之间的一组数据:
则y与x的线性回归方程=x+必过点(2,5).
| x | 0 | 1 | 2 | 3 | 4 |
| y | 1 | 3 | 5 | 7 | 9 |