题目内容

设函数f(x)=
1
4
x2+bx-
3
4
.若对任意实数α,β,不等式f(cosα)≤0,f(2-sinβ)≥0恒成立,则b=
 
考点:二次函数的性质
专题:函数的性质及应用
分析:结合三角函数的值域,及已知条件,可得f(x)=
1
4
x2+bx-
3
4
≤0在[-1,1]上恒成立且f(x)=
1
4
x2+bx-
3
4
≥0在[1,3]上恒成立,进而可得f(1)=0,进而得到答案.
解答: 解:∵cosα∈[-1,1],2-sinβ∈[1,3]
且f(cosα)≤0,f(2-sinβ)≥0恒成立,
f(x)=
1
4
x2+bx-
3
4
≤0在[-1,1]上恒成立且f(x)=
1
4
x2+bx-
3
4
≥0在[1,3]上恒成立,
f(1)=
1
4
+b-
3
4
=0
故b=
1
2

故答案为:
1
2
点评:本题考查的知识点是二次函数的图象和性质,其中根据已知分析出f(1)=0,是解答的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网