ÌâÄ¿ÄÚÈÝ
3£®ÎªÁ˶Ô2016ÄêijУÖп¼³É¼¨½øÐзÖÎö£¬ÔÚ60·ÖÒÔÉϵÄÈ«ÌåͬѧÖÐËæ»ú³é³ö8룬ËûÃǵÄÊýѧ·ÖÊý£¨ÒÑÕÛËãΪ°Ù·ÖÖÆ£©´ÓСµ½´óÅÅÊÇ60¡¢65¡¢70¡¢75¡¢80¡¢85¡¢90¡¢95£¬ÎïÀí·ÖÊý´ÓСµ½´óÅÅÊÇ72¡¢77¡¢80¡¢84¡¢88¡¢90¡¢93¡¢95£®£¨1£©Èô¹æ¶¨85·ÖÒÔÉÏΪÓÅÐ㣬ÇóÕâ8λͬѧÖÐÇ¡ÓÐ3λͬѧµÄÊýѧºÍÎïÀí·ÖÊý¾ùΪÓÅÐãµÄ¸ÅÂÊ£»
£¨2£©ÈôÕâ8λͬѧµÄÊýѧ¡¢ÎïÀí¡¢»¯Ñ§·ÖÊýÊÂʵÉ϶ÔÓ¦ÈçÏÂ±í£º
| ѧÉú±àºÅ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| Êýѧ·ÖÊýx | 60 | 65 | 70 | 75 | 80 | 85 | 90 | 95 |
| ÎïÀí·ÖÊýy | 72 | 77 | 80 | 84 | 88 | 90 | 93 | 95 |
| »¯Ñ§·ÖÊýz | 67 | 72 | 76 | 80 | 84 | 87 | 90 | 92 |
¢ÚÇóyÓëx¡¢zÓëxµÄÏßÐԻع鷽³Ì£¨ÏµÊý¾«È·µ½0.01£©£¬µ±Ä³Í¬Ñ§µÄÊýѧ³É¼¨Îª50·Öʱ£¬¹À¼ÆÆäÎïÀí¡¢»¯Ñ§Á½¿ÆµÄµÃ·Ö£®
²Î¿¼¹«Ê½£ºÏà¹ØÏµÊý$r=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©}£¨{{y_i}-\overline y}£©}}{{\sqrt{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}•\sum_{i=1}^n{{{£¨{{y_i}-\overline y}£©}^2}}}}$£¬
»Ø¹éÖ±Ïß·½³ÌÊÇ£º$\hat y=bx+a$£¬ÆäÖÐ$b=\frac{{\sum_{i=1}^n{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©}}}{{\sum_{i=1}^n{{{£¨{{x_i}-\overline x}£©}^2}}}}£¬a=\overline y-b\overline x$£¬
²Î¿¼Êý¾Ý£º$\overline x=77.5£¬\overline y=85£¬\overline z=81£¬\sum_{i=1}^8{{{£¨{{x_i}-\overline x}£©}^2}¡Ö1050£¬\sum_{i=1}^8{{{£¨{{y_i}-\overline y}£©}^2}¡Ö456}}$£¬$\sum_{i=1}^8{{{£¨{{z_i}-\overline z}£©}^2}}¡Ö550£¬\sum_{i=1}^8{£¨{{x_i}-\overline x}£©£¨{{y_i}-\overline y}£©¡Ö688}$£¬$\sum_{i=1}^8{£¨{{x_i}-\overline x}£©£¨{{z_i}-\overline z}£©¡Ö755}£¬\sqrt{1050}¡Ö32.4$£¬$\sqrt{456}¡Ö21.4£¬\sqrt{550}¡Ö23.5$£®
·ÖÎö £¨1£©Çó³ö´ÓÕâ8λͬѧÖÐÇ¡ÓÐ3λͬѧµÄÊýѧºÍÎïÀí·ÖÊý¾ùΪÓÅÐãµÄ»ù±¾Ê¼þÊý£¬
ÒÔ¼°Õâ8λͬѧµÄÎïÀí·ÖÊýºÍÊýѧ·ÖÊý·Ö±ð¶ÔÓ¦»ù±¾Ê¼þÊý£¬¼ÆËãËùÇóµÄ¸ÅÂÊÖµ£»
£¨2£©¢Ù±äÁ¿yÓëx¡¢zÓëxµÄÏà¹ØÏµÊý£¬µÃ³öÎïÀíÓëÊýѧ¡¢»¯Ñ§ÓëÊýѧ³É¼¨¶¼ÊǸ߶ÈÕýÏà¹Ø£»
¢ÚÇó³öyÓëx¡¢zÓëxµÄÏßÐԻع鷽³Ì£¬Óɴ˼ÆËãx=50ʱyÓëzµÄÖµ¼´¿É£®
½â´ð ½â£º£¨1£©Õâ8λͬѧÖÐÇ¡ÓÐ3λͬѧµÄÊýѧºÍÎïÀí·ÖÊý¾ùΪÓÅÐ㣬
ÔòÐèÒªÏÈ´ÓÎïÀí4 ¸öÓÅÐã·ÖÊýÖÐÑ¡³ö3¸öÓëÊýѧ·ÖÊý¶ÔÓ¦£¬
²»Í¬µÄÖÖÊýÊÇ${C}_{4}^{3}$${A}_{3}^{3}$£¨»ò${A}_{4}^{3}$£©£¬
È»ºóʣϵÄ5¸öÊýѧ·ÖÊýºÍÎïÀí·ÖÊýÈÎÒâ¶ÔÓ¦£¬²»Í¬µÄÖÖÊýÊÇ$A_5^5$£»
¸ù¾Ý³Ë·¨ÔÀí£¬Âú×ãÌõ¼þµÄ²»Í¬ÖÖÊýÊÇ$C_4^3A_3^3A_5^5$£»
Õâ8λͬѧµÄÎïÀí·ÖÊýºÍÊýѧ·ÖÊý·Ö±ð¶ÔÓ¦ÖÖÊý¹²ÓÐ$A_8^8$£¬
¹ÊËùÇóµÄ¸ÅÂÊΪ$P=\frac{C_4^3A_3^3A_5^5}{A_8^8}=\frac{1}{14}$£»
£¨2£©¢Ù±äÁ¿yÓëx¡¢zÓëxµÄÏà¹ØÏµÊý·Ö±ðÊÇ
$r=\frac{688}{32.4¡Á21.4}¡Ö0.99¡¢r'=\frac{755}{32.4¡Á23.5}¡Ö0.99$£¬
¿ÉÒÔ¿´³ö£ºÎïÀíÓëÊýѧ¡¢»¯Ñ§ÓëÊýѧ³É¼¨¶¼ÊǸ߶ÈÕýÏà¹Ø£»
¢ÚÉèyÓëx¡¢zÓëxµÄÏßÐԻع鷽³Ì·Ö±ðÊÇ$\hat y=bx+a¡¢\hat z=b'x+a'$£¬
¸ù¾ÝËù¸øµÄÊý¾Ý£¬¼ÆËã³ö
$b=\frac{688}{1050}=0.66£¬a=85-0.66¡Á77.5=33.85$£¬
$b'=\frac{755}{1050}=0.72£¬a'=81-0.72¡Á77.5=25.20$£¬
ËùÒÔyÓëx¡¢zÓëxµÄ»Ø¹é·½³Ì·Ö±ðÊÇ
$\hat y=0.66x+33.85$¡¢$\hat z=0.72x+25.20¡$£¬
µ±x=50ʱ£¬$\hat y=66.85£¬\hat z=61.2$£¬
¡àµ±¸ÃÉúµÄÊýѧΪ50·Öʱ£¬ÆäÎïÀí¡¢»¯Ñ§³É¼¨·Ö±ðԼΪ66.85·Ö¡¢61.2·Ö£®
µãÆÀ ±¾Ì⿼²éÁ˹ŵä¸ÅÐ͵ĸÅÂÊÓëÏßÐԻع鷽³ÌµÄÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | £¨-2£¬1£© | B£® | £¨1£¬4£© | C£® | {2£¬3} | D£® | {-1£¬0} |
| A£® | 1 | B£® | 3 | C£® | 9 | D£® | 81 |
| A£® | $\frac{1}{4}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{2}{7}$ | D£® | $\frac{3}{8}$ |
| A£® | $\frac{¦Ð}{3}$ | B£® | $\frac{7¦Ð}{6}$ | C£® | ¦Ð | D£® | $\frac{5¦Ð}{6}$ |