题目内容

11.设f(x)=x2+px+q,集合A={x|f(x)=x},B={x|f[f(x)]=x}.
(1)若q=1且A≠∅,求实数p的取值范围;
(2)若A={-1,3},求B.

分析 (1)若q=1且A≠∅,则x2+(p-1)x+1=0,利用△=(p-1)2-4≥0得到结论;
(2)由A={x|f(x)=x}={x|x2+px+q=x}={x|x2+(p-1)x+q=0}={-1,3},结合方程根与系数关系可求p,q,进而可求,f(x),然后代入B={x|f[f(x)]=x}整理可求.

解答 解:(1)若q=1且A≠∅,则x2+(p-1)x+1=0,
△=(p-1)2-4≥0,∴p≤-1或p≥3;
(2)∵A={x|f(x)=x}={x|x2+px+q=x}={x|x2+(p-1)x+q=0}={-1,3}
∴-1,3是方程x2+(p-1)x+q=0的根
∴$\left\{\begin{array}{l}{1-p=2}\\{q=-3}\end{array}\right.$,即p=-1,q=-3,f(x)=x2-x-3
∴B={x|f[f(x)]=x}={x|f(x2-x-3)=x}={x|(x2-x-3)2-(x2-x-3)-3=x}
化简可得,(x2-x-3)2-x2=0
∴(x2-3)(x2-2x-3)=0
∴x=$\sqrt{3}$或x=-$\sqrt{3}$或x=3或x=-1
∴B={$\sqrt{3}$,-$\sqrt{3}$,-1,3}.

点评 本题主要考查了二次函数与二次方程之间关系的相互转化,方程的根与系数关系的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网