题目内容

20.设f(x)是定义在R上的偶函数,若f(x)在区间[0,+∞)是增函数,且f(2)=0,则不等式f(x+2)>0的解集为(-∞,-4)∪(0,+∞).

分析 由已知中函数f(x)是定义在实数集R上的偶函数,根据偶函数在对称区间上单调性相反,结合f(x)上在(0,+∞)为单调增函数,易判断f(x)在(-∞,0]上的单调性,根据单调性的定义即可求得.

解答 解:由题意,x+2>2或x+2<-2,解得x>0或x<-4,
故答案为:(-∞,-4)∪(0,+∞).

点评 本题考查的知识点是函数单调性的应用,其中利用偶函数在对称区间上单调性相反,判断f(x)在(-∞,0]上的单调性是解答本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网