题目内容
考点:直线与平面平行的判定
专题:证明题,空间位置关系与距离
分析:取AD中点E,连接ME,NE,由已知M,N分别是PA,BC的中点,可得ME∥PD,NE∥CD,从而可证平面MNE∥平面PCD,从而可证MN∥平面PCD.
解答:
证明:取AD中点E,连接ME,NE,
由已知M,N分别是PA,BC的中点,
∴ME∥PD,NE∥CD
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PCD,
所以,MN∥平面PCD.
由已知M,N分别是PA,BC的中点,
∴ME∥PD,NE∥CD
又ME,NE?平面MNE,ME∩NE=E,
所以,平面MNE∥平面PCD,
所以,MN∥平面PCD.
点评:本题主要考察了直线与平面平行的判定,平面与平面平行的判定,属于基本知识的考查.
练习册系列答案
相关题目
直线l经过点M(1,2),且被圆:x2+y2=25所截得的弦长最短,则直线l的方程为( )
| A、2x-y=0 |
| B、2x+y-4=0 |
| C、x+2y+5=0 |
| D、x+2y-5=0 |
甲乙二人同时从A地赶往B地,甲先骑自行车到中点后改为跑步,而乙则是先跑步,到中点后改为骑自行车,最后二人同时到达B地,甲乙两人骑自行车速度都大于各自跑步速度,又知甲骑自行车比乙骑自行车的速度快.若某人离开A地的距离S与所用时间t的函数用图象表示如下,则在下列给出的四个函数中

甲乙二人的图象只可能( )
甲乙二人的图象只可能( )
| A、甲是图①,乙是图② |
| B、甲是图①,乙是图④ |
| C、甲是图③,乙是图② |
| D、甲是图③,乙是图④ |