题目内容
设数列
的前
项和为
, 已知
,
.
(1)设
,证明数列
是等比数列;
(2)求数列
的通项公式;
(3)设
,求数列
的前n项和
.
(2)由(I)可得
,![]()
∴数列
是首项为
,公差为
的等比数列. 6分
∴
,
. 8分
(3)由(2)知,
,则
,
,
错位相减,得 ![]()
, 10分
所以
.
解析
练习册系列答案
相关题目
题目内容
设数列
的前
项和为
, 已知
,
.
(1)设
,证明数列
是等比数列;
(2)求数列
的通项公式;
(3)设
,求数列
的前n项和
.
(2)由(I)可得
,![]()
∴数列
是首项为
,公差为
的等比数列. 6分
∴
,
. 8分
(3)由(2)知,
,则
,
,
错位相减,得 ![]()
, 10分
所以
.
解析