题目内容

17.如图,在△ABC中,点D在边BC上,BD=2,BA=3,AD=$\sqrt{7}$,∠C=45°.
(1)求∠B的大小;
(2)求△ABD的面积及边AC的长.

分析 (1)直接利用余弦定理化简求解即可.
(2)利用三角形的面积以及正弦定理求解即可.

解答 解:(1)在△ABD中,由余弦定理,得
$cos∠B=\frac{{B{A^2}+B{D^2}-A{D^2}}}{2BA•BD}$=$\frac{{{3^2}+{2^2}-{{(\sqrt{7})}^2}}}{2×3×2}=\frac{1}{2}$.…(5分)
又0°<∠B<180°,所以∠B=60°.…(6分)
(2)${S_{△ABD}}=\frac{1}{2}BA•BD•sin∠B=\frac{1}{2}×3×2×\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{2}$.…(9分)
在△ABC中,由正弦定理,得$\frac{AC}{sin∠B}=\frac{AB}{sin∠C}$,
即$\frac{AC}{sin60°}=\frac{3}{sin45°}$.解得$AC=\frac{{3\sqrt{6}}}{2}$.…(12分)

点评 本题考查正弦定理与余弦定理的应用,考查转化思想以及计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网