题目内容
己知命题“?x∈R,2x2+(a-1)x+
≤0是假命题,则实数a的取值范围是( )
| 1 |
| 2 |
| A、(-∞,-1) |
| B、(-1,3) |
| C、(-3,+∞) |
| D、(-3,1) |
分析:写出原命题的否命题,据命题p与¬p真假相反,得到2x2+(a-1)x+
>0恒成立,令判别式小于0,求出a的范围.
| 1 |
| 2 |
解答:解:∵“?x∈R,2x2+(a-1)x+
≤0”的否定为“?x∈R,2x2+(a-1)x+
>0“
∵“?x∈R,2x2+(a-1)x+
≤0”为假命题
∴“?x∈R,2x2+(a-1)x+
>0“为真命题
即2x2+(a-1)x+
>0恒成立
∴(a-1)2-4×2×
<0
解得-1<a<3
故选B
| 1 |
| 2 |
| 1 |
| 2 |
∵“?x∈R,2x2+(a-1)x+
| 1 |
| 2 |
∴“?x∈R,2x2+(a-1)x+
| 1 |
| 2 |
即2x2+(a-1)x+
| 1 |
| 2 |
∴(a-1)2-4×2×
| 1 |
| 2 |
解得-1<a<3
故选B
点评:本题考查含量词的命题的否定形式:将量词”?”与“?”互换,同时结论否定、考查命题与其否定真假相反、考查二次不等式恒成立从开口方向及判别式两方面考虑.
练习册系列答案
相关题目