题目内容
5.在等差数列{an}中,a1=-2016,其前n项和为Sn,若$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,则S2016的值等于-2016.分析 由已知条件利用等差数列的前n项和公式得到$\frac{20{a}_{1}+\frac{20×19}{2}d}{20}$-$\frac{18{a}_{1}+\frac{18×17}{2}d}{18}$=d=2,由此能求出S2016的值.
解答 解:在等差数列{an}中,
∵an=a1+(n-1)d,
${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$=n(${a}_{1}+\frac{n-1}{2}d$),
a1=-2016,其前n项和为Sn,$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,
∴$\frac{20{a}_{1}+\frac{20×19}{2}d}{20}$-$\frac{18{a}_{1}+\frac{18×17}{2}d}{18}$=d=2,
∴S2016=2016a1+$\frac{2016×2015}{2}×2$=2016×(-2016)+2016×2015=-2016.
故答案为:-2016.
点评 本题考查等差数列的前2016项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
20.已知F1,F2分别为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左右焦点,过F1的直线l与双曲线C的左右两支分别交于A,B两点,若|AB|:|BF2|:|AF2|=4:3:5,则双曲线的离心率为( )
| A. | $\sqrt{13}$ | B. | $\sqrt{15}$ | C. | 2 | D. | $\sqrt{5}$ |
10.
如图,抛物线:y2=4mx(m>0)和圆:x2+y2-2mx=0,直线l经过抛物线的焦点,依次交抛物线,圆于A,B,C,D四点,|AB|•|CD|=2,则m的值为( )
| A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
17.已知点A(-3,1,-4),则点A关于原点对称的点的坐标为( )
| A. | (-3,-1,4) | B. | (-3,-1,-4) | C. | (3,1,4) | D. | (3,-1,4) |