题目内容

5.在等差数列{an}中,a1=-2016,其前n项和为Sn,若$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,则S2016的值等于-2016.

分析 由已知条件利用等差数列的前n项和公式得到$\frac{20{a}_{1}+\frac{20×19}{2}d}{20}$-$\frac{18{a}_{1}+\frac{18×17}{2}d}{18}$=d=2,由此能求出S2016的值.

解答 解:在等差数列{an}中,
∵an=a1+(n-1)d,
${S}_{n}=n{a}_{1}+\frac{n(n-1)}{2}d$=n(${a}_{1}+\frac{n-1}{2}d$),
a1=-2016,其前n项和为Sn,$\frac{{{S_{20}}}}{20}-\frac{{{S_{18}}}}{18}$=2,
∴$\frac{20{a}_{1}+\frac{20×19}{2}d}{20}$-$\frac{18{a}_{1}+\frac{18×17}{2}d}{18}$=d=2,
∴S2016=2016a1+$\frac{2016×2015}{2}×2$=2016×(-2016)+2016×2015=-2016.
故答案为:-2016.

点评 本题考查等差数列的前2016项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网