题目内容
已知正数满足,则的最小值为 .
如图,投抛物线,为直线上任意一点,过引抛物线的切线,切点分别为.求证:三点的横坐标成等差数列
命题“,”的否定是 .
某工厂拟建一座平面图为矩形,面积为的三段式污水处理池,池高为1,如果池的四周墙壁的建造费单价为元,池中的每道隔墙厚度不计,面积只计一面,隔墙的建造费单价为元,池底的建造费单价为元,则水池的长、宽分别为多少米时,污水池的造价最低?最低造价为多少元?
“两条直线不相交”是“两条直线是异面直线”的 条件.(填 “充分不必要”、“必要不充分”、“充要”、“既不必要又不充分”中的一个)
已知命题:任意,,命题:函数在上单调递减.
(1)若命题为真命题,求实数的取值范围;
(2)若和均为真命题,求实数的取值范围.
抛物线的焦点坐标为 .
已知椭圆的左右两焦点分别为,是椭圆上一点,且在轴上方, .
(1)求椭圆的离心率的取值范围;
(2)当取最大值时,过的圆的截轴的线段长为6,求椭圆的方程;
(3)在(2)的条件下,过椭圆右准线上任一点引圆的两条切线,切点分别为.试探究直线是否过定点?若过定点,请求出该定点;否则,请说明理由.
已知椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,点M(0,2)是椭圆的一个顶点,△F1MF2是等腰直角三角形.
(1)求椭圆的方程;
(2)过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,
且k1+k2=8,证明:直线AB过定点.