题目内容
6.已知$sinα=-\frac{4}{5}$,$π<α<\frac{3π}{2}$,则$cos\frac{α}{2}$的值为( )| A. | $\frac{{\sqrt{5}}}{5}$ | B. | $-\frac{{\sqrt{5}}}{5}$ | C. | $\frac{{2\sqrt{5}}}{5}$ | D. | $-\frac{{2\sqrt{5}}}{5}$ |
分析 由角的范围可得sin$\frac{α}{2}$>0,cos$\frac{α}{2}$<0,利用二倍角公式可得2sin$\frac{α}{2}$cos$\frac{α}{2}$=-$\frac{4}{5}$,又由同角三角函数基本关系式可得sin2$\frac{α}{2}$+cos2$\frac{α}{2}$=1,联立即可解得cos$\frac{α}{2}$的值.
解答 解:∵$π<α<\frac{3π}{2}$,
∴$\frac{π}{2}$<$\frac{α}{2}$<$\frac{3π}{4}$,可得:sin$\frac{α}{2}$>0,cos$\frac{α}{2}$<0,
∵$sinα=-\frac{4}{5}$,可得:2sin$\frac{α}{2}$cos$\frac{α}{2}$=-$\frac{4}{5}$,①,
又∵sin2$\frac{α}{2}$+cos2$\frac{α}{2}$=1,②
∴①+②解得:sin$\frac{α}{2}$+cos$\frac{α}{2}$=$\frac{\sqrt{5}}{5}$,②-①解得:sin$\frac{α}{2}$-cos$\frac{α}{2}$=$\frac{3\sqrt{5}}{5}$,
∴两式相减可得cos$\frac{α}{2}$=-$\frac{\sqrt{5}}{5}$.
故选:B.
点评 本题主要考查了二倍角公式,同角三角函数基本关系式在三角函数化简求值中的应用,属于基础题.
练习册系列答案
相关题目
17.为提高学生学习数学的兴趣,某地区举办了小学生“数独比赛”.比赛成绩共有90分,70分,60分,40分,30分五种,按本次比赛成绩共分五个等级.从参加比赛的学生中随机抽取了30名学生,并把他们的比赛成绩按这五个等级进行了统计,得到如下数据表:
(1)根据上面的统计数据,试估计从本地区参加“数独比赛”的小学生中任意抽取一人,其成绩等级为“A或B”的概率;
(2)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.
| 成绩等级 | A | B | C | D | E |
| 成绩(分) | 90 | 70 | 60 | 40 | 30 |
| 人数(名) | 4 | 6 | 10 | 7 | 3 |
(2)从这30名学生中,随机选取2人,求“这两个人的成绩之差大于20分”的概率.
1.将函数y=sin2x的图象向左$\frac{π}{6}$平移个单位,向上平移1个单位,得到的函数解析式为( )
| A. | y=sin(2x+$\frac{π}{3}$)+1 | B. | y=sin(2x-$\frac{π}{3}$)+1 | C. | y=sin(2x+$\frac{π}{6}$)+1 | D. | y=sin(2x-$\frac{π}{6}$)+1 |
11.
某科技研究所对一批新研发的产品长度进行检测(单位:mm),如图是检测结果的频率分布直方图,据此估计这批产品的中位数为( )
| A. | 20 | B. | 22.5 | C. | 22.75 | D. | 25 |