ÌâÄ¿ÄÚÈÝ
10£®ÔÚÎÒУ½øÐеÄÑ¡Ð޿νáÒµ¿¼ÊÔÖУ¬ËùÓÐÑ¡ÐÞ¡°ÊýѧÓëÂß¼¡±µÄͬѧ¶¼Í¬Ê±Ò²Ñ¡ÐÞÁË¡°ÔĶÁÓë±í´ï¡±µÄ¿Î³Ì£¬Ñ¡ÐÞ¡°ÔĶÁÓë±í´ï¡±µÄͬѧ¶¼Í¬Ê±Ò²Ñ¡ÐÞÁË¡°ÊýѧÓëÂß¼¡±µÄ¿Î³Ì£®Ñ¡Ð޿νáÒµ³É¼¨·ÖΪA£¬B£¬C£¬D£¬EÎå¸öµÈ¼¶£®Ä³¿¼³¡¿¼ÉúµÄÁ½¿Æ¿¼ÊԳɼ¨µÄÊý¾Ýͳ¼ÆÈçͼËùʾ£¬ÆäÖС°ÊýѧÓëÂß¼¡±¿ÆÄ¿µÄ³É¼¨ÎªBµÄ¿¼ÉúÓÐ10ÈË£¬£¨1£©Çó¸Ã¿¼³¡¿¼ÉúÖС°ÔĶÁÓë±í´ï¡±¿ÆÄ¿Öгɼ¨ÎªAµÄÈËÊý£»
£¨2£©ÏÖÔÚ´Ó¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿µÄ³É¼¨ÎªAºÍDµÄ¿¼ÉúÖÐËæ»ú³éÈ¡Á½ÈË£¬ÔòÇó³éµ½µÄÁ½Ãû¿¼Éú¶¼Êdzɼ¨ÎªAµÄ¿¼ÉúµÄ¸ÅÂÊ£®
·ÖÎö £¨1£©¸ù¾Ý¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿µÄ³É¼¨ÎªBµÄ¿¼ÉúÓÐ10ÈË£¬½áºÏÑù±¾ÈÝÁ¿=ƵÊý¡ÂƵÂʵóö¸Ã¿¼³¡¿¼ÉúÈËÊý£¬´Ó¶øµÃµ½¸Ã¿¼³¡¿¼ÉúÖС°ÔĶÁÓë±í´ï¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªAµÄÈËÊý£»
£¨2£©Í¨¹ýÁоٵķ½·¨¼ÆËã³öÑ¡³öµÄ2ÈËËùÓпÉÄܵÄÇé¿ö¼°ÕâÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪAµÄÇé¿ö£»ÀûÓùŵä¸ÅÐ͸ÅÂʹ«Ê½Çó³öËæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬ÕâÁ½È˵ÄÁ½¿Æ³É¼¨µÈ¼¶¾ùΪAµÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©ÒòΪ¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªBµÄ¿¼ÉúÓÐ10ÈË£¬
ËùÒԸÿ¼³¡ÓÐ10¡Â0.25=40ÈË£¬¡£¨2·Ö£©
ËùÒԸÿ¼³¡¿¼ÉúÖС°ÔĶÁÓë±í´ï¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªAµÄÈËÊýΪ40¡Á£¨1-0.375-0.375-0.15-0.025£©=3 ÈË£» ¡£¨4·Ö£©
£¨2£©ÒòΪ¡°ÊýѧÓëÂß¼¡±¿ÆÄ¿Öгɼ¨µÈ¼¶ÎªBµÄ¿¼ÉúÓÐ10ÈË£¬ËùÒԸÿ¼³¡ÓÐ10¡Â0.25=40ÈË£¬Ôò³É¼¨ÎªAµÄ¿¼ÉúÓÐ40¡Á0.075=3ÈË£¬¡£¨6·Ö£©
³É¼¨ÎªDµÄ¿¼ÉúÓÐ40¡Á£¨1-0.2-0.375-0.25-0.075£©=4ÈË ¡£¨8·Ö£©
Éè³É¼¨ÎªAµÄ¿¼ÉúΪa¡¢b¡¢c£¬³É¼¨ÎªDµÄ¿¼ÊÔΪd¡¢e¡¢f¡¢g£®
Ëæ»ú³éÈ¡Á½È˽øÐзÃ̸£¬»ù±¾Ê¼þ¹²ÓÐ21¸ö£¬·Ö±ðΪ£¨a£¬b£©£¨a£¬c£©£¨a£¬d£©£¨a£¬e£©£¨a£¬f£©£¨a£¬g£©£¨b£¬c£©£¨b£¬d£©£¨b£¬e£©£¨b£¬f£©£¨b£¬g£©£¨c£¬d£©£¨c£¬e£©£¨c£¬f£©£¨c£¬g£©£¨d£¬e£©£¨d£¬f£©£¨d£¬g£©£¨e£¬f£©£¨e£¬g£©£¨f£¬g£©
ÉèʼþN£º³éµ½µÄÁ½Ãû¿¼Éú¶¼Êdzɼ¨ÎªAµÄ¿¼Éú£¬¡£¨10·Ö£©
ÔòʼþN°üº¬£¨a£¬b£©£¨a£¬c£©£¨b£¬c£©£¬
Ôò$P£¨N£©=\frac{3}{21}=\frac{1}{7}$¡£¨12·Ö£©
µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éͳ¼ÆÓë¸ÅÂʵÄÏà¹ØÖªÊ¶£¬¾ßÌåÉæ¼°µ½ÆµÂÊ·Ö²¼Ö±·½Í¼¼°¹Åµä¸ÅÐ͵ÈÄÚÈÝ£®ÊôÓÚ»ù´¡Ì⣮
| A£® | sin$\frac{19¦Ð}{8}$£¼cos$\frac{14¦Ð}{9}$ | B£® | sin£¨-$\frac{54¦Ð}{7}$£©£¼sin£¨-$\frac{63¦Ð}{8}$£© | ||
| C£® | tan£¨-$\frac{13¦Ð}{4}$£©£¾tan£¨-$\frac{17¦Ð}{5}$£© | D£® | tan138¡ã£¾tan143¡ã |
| A£® | $\sqrt{2}$ | B£® | $\sqrt{3}$ | C£® | 2 | D£® | $\sqrt{5}$ |
| A£® | 12 | B£® | 14 | C£® | 3 | D£® | 21 |
| A£® | -39 | B£® | 5 | C£® | 39 | D£® | 65 |
| ÈÕ ÆÚ | 1ÔÂ10ÈÕ | 2ÔÂ10ÈÕ | 3ÔÂ10ÈÕ | 4ÔÂ10ÈÕ | 5ÔÂ10ÈÕ | 6ÔÂ10ÈÕ |
| Öçҹβîx£¨¡ãC£© | 10 | 11 | 13 | 12 | 8 | 6 |
| ¾ÍÕïÈËÊýy£¨¸ö£© | 22 | 25 | 29 | 26 | 16 | 12 |
£¨1£©ÇóѡȡµÄ2×éÊý¾ÝÇ¡ºÃÊÇÏàÁÚÁ½¸öÔµĸÅÂÊ£»
£¨2£©ÈôѡȡµÄÊÇ1ÔÂÓë6ÔµÄÁ½×éÊý¾Ý£¬Çë¸ù¾Ý2ÖÁ5Ô·ݵÄÊý¾Ý£¬Çó³öy¹ØÓÚxµÄÏßÐԻع鷽³Ìy=bx+a£»
£¨¸½£º$\widehat{b}$=$\frac{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©£¨{y}_{i}-\overline{y}£©}{\sum_{i=1}^{n}£¨{x}_{i}-\overline{x}£©^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$£©
| A£® | -1 | B£® | 1 | C£® | -$\frac{1}{2}$ | D£® | $\frac{1}{2}$ |