题目内容
将函数y=f'(x)sinx的图象向左平移
个单位,得到函数y=1-2sin2x的图象,则f(x)是______.
| π |
| 4 |
将函数y=f'(x)sinx的图象向左平移
个单位得到y=1-2sin2x
又因为f'(x+
)sin(x+
)=f'(x+
)×
(cosx+sinx)
=1-2sin2x=cos2x=cos2x-sin2x
∴f'(x+
)=
(cosx-sinx)=2cos(x+
)
∴f'(x)=2cosx∴f(x)=2sinx
故答案为:2sinx
| π |
| 4 |
又因为f'(x+
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| ||
| 2 |
=1-2sin2x=cos2x=cos2x-sin2x
∴f'(x+
| π |
| 4 |
| 2 |
| π |
| 4 |
∴f'(x)=2cosx∴f(x)=2sinx
故答案为:2sinx
练习册系列答案
相关题目