题目内容
观察等式:,,.照此规律,对于一般的角,有等式 .
解析试题分析:,,,所以.考点:归纳推理.
蜜蜂被认为是自然界中最杰出的建筑师,单个蜂巢可以近似地看作是一个正六边形,如图为一组蜂巢的截面图. 其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以表示第幅图的蜂巢总数,则=_______.
请阅读下列材料:若两个正实数a1,a2满足a12+a22=1,那么a1+a2≤.证明:构造函数f(x)=(x-a1)2+(x-a2)2=2x2-2(a1+a2)x+1,因为对一切实数x,恒有f(x)≥0,所以Δ≤0,从而得4(a1+a2)2-8≤0,所以a1+a2≤.根据上述证明方法,若n个正实数满足a12+a22+…+an2=1时,你能得到的结论为________.
小明在做一道数学题目时发现:若复数,(其中), 则, ,根据上面的结论,可以提出猜想: z1·z2·z3= .
求“方程的解”有如下解题思路:设,则在上单调递减,且,所以原方程有唯一解.类比上述解题思路,方程的解为 .
当成等差数列时,有当成等差数列时,有当成等差数列时,有由此归纳,当 成等差数列时,有.如果成等比数列,类比上述方法归纳出的等式为______________.
已知 ,猜想的表达式为
如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,则(1)按网络运作顺序第n行第1个数字(如第2行第1个数字为2,第3行第1个数字为4,…)是________;(2)第63行从左至右的第4个数字应是________.
-2与-的大小关系是______________.