题目内容
15.设f(x)=x2(2-x),则f(x)的单调递增区间是( )| A. | (2,+∞) | B. | (0,2) | C. | $({0,\frac{4}{3}})$ | D. | $({\frac{4}{3},2})$ |
分析 化简函数的解析式,求出导函数,利用导函数的符号求解不等式得到单调增区间即可.
解答 解:f(x)=x2(2-x)=2x2-x3.
导函数为:f′(x)=4x-3x2,
由4x-3x2>0,解得x∈(0,$\frac{4}{3}$).
所以函数的单调增区间为:(0,$\frac{4}{3}$).
故选:C.
点评 本题考查函数的导数的应用,单调增区间的求法,考查计算能力.
练习册系列答案
相关题目
20.复数z=-2+i所对应的点在复平面的( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
7.观察下列各等式:$\frac{5}{5-4}$+$\frac{3}{3-4}$=2,$\frac{2}{2-4}$+$\frac{6}{6-4}$=2,$\frac{7}{7-4}$+$\frac{1}{1-4}$=2,$\frac{10}{10-4}$+$\frac{-2}{-2-4}$=2,依照以上各式成立的规律,得到一般性的等式为( )
| A. | $\frac{n}{n-4}$+$\frac{8-n}{8-n-4}$=2 | B. | $\frac{n+1}{n+1-4}$+$\frac{n+1+5}{n+1-4}$=2 | ||
| C. | $\frac{n}{n-4}$+$\frac{n}{n+4-4}$=2 | D. | $\frac{n+1}{n+1-4}$+$\frac{n+5}{n+5-4}$=2 |
4.已知F1,F2是双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左,右焦点,点M在E上,MF1与x轴垂直,sin∠MF2F1=$\frac{1}{3}$,则E的离心率为( )
| A. | $\sqrt{2}$ | B. | $\frac{3}{2}$ | C. | $\sqrt{3}$ | D. | 2 |
5.命题“若a>b,则ac>bc”的逆否命题是( )
| A. | 若a>b,则ac≤bc | B. | 若ac≤bc,则a≤b | C. | 若ac>bc,则a>b | D. | 若a≤b,则ac≤bc |