题目内容

10.已知双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{3}$=1(a>0)的离心率为2,则a=1.

分析 求得双曲线的b,由c=$\sqrt{{a}^{2}+{b}^{2}}$和e=$\frac{c}{a}$,解关于a的方程,即可得到所求值.

解答 解:双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{3}$=1的b=$\sqrt{3}$,
c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{{a}^{2}+3}$,
可得e=$\frac{c}{a}$=$\frac{\sqrt{{a}^{2}+3}}{a}$=2,
解得a=1.
故答案为:1.

点评 本题考查双曲线的方程和性质,注意运用离心率公式和基本量a,b,c的关系,考查方程思想和运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网