题目内容
函数y=sin2(2x+
)的导数为______.
| π |
| 3 |
由y=sin2(2x+
),得y=
-
cos(4x+
).
所以y′=(
-
cos(4x+
))′
=(-
)×[-sin(4x+
)]×(4x+
)′
=2sin(4x+
).
故答案为2sin(4x+
).
| π |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 2π |
| 3 |
所以y′=(
| 1 |
| 2 |
| 1 |
| 2 |
| 2π |
| 3 |
=(-
| 1 |
| 2 |
| 2π |
| 3 |
| 2π |
| 3 |
=2sin(4x+
| 2π |
| 3 |
故答案为2sin(4x+
| 2π |
| 3 |
练习册系列答案
相关题目