题目内容
已知函数与函数在上增长较快的是 .
如图,在棱柱的侧棱上各有一个动点,且满足,是棱上的动点,则的最大值是 .
已知函数 与,其中是偶函数.
(1)求实数的值;
(2)求函数的定义域;
(3)若函数与的图象有且只有一个公共点,求实数的取值范围.
关于圆周率,数学发展史上出现过许多很有创意的求法,如著名的蒲丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学,每人随机写下一个都小于1 的正实数对;再统计两数能与1构成钝角三角形三边的数对的个数;最后再根据统计数来估计的值.假如统计结果是,那么可以估计为 .(用分数表示)
用表示非空集合中元素的个数,定义,若,,且,设实数的所有可能取值构成集合,则( )
A.4 B.3 C.2 D.1
已知函数,则 .
如图,在△中,,,高,在内作射线交于点,求的概率 .
过抛物线()的焦点作倾斜角为的直线,若直线与抛物线在第一象限的交点为并且点也在双曲线(,)的一条渐近线上,则双曲线的离心率为( )
A. B. C. D.
设椭圆C:的离心率与双曲线的离心率互为倒数,且椭圆C过点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C的左、右焦点分别为,过的直线与椭圆C相交于A、B两点,求面积的最大值.