题目内容
13.已知等差数列{an}的首项a1=1,公差d>0,数列{bn}是等比数列,且b2=a2,b3=a5,b4=a14.(I)求数列{an}和{bn}的通项公式;
(Ⅱ)设数列{cn}对任意正整数n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$成立,求c1+c2+…+c2014的值.
分析 (Ⅰ)通过a2,a5,a14成等比数列计算可知d=2,进而计算可得结论;
(Ⅱ)通过(I)计算可知c1=3,利用$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$与$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n-1}}{{b}_{n-1}}$=an作差,进而计算可得数列{cn}的通项公式,进而计算可得结论.
解答 解:(Ⅰ)∵a2=1+d,a5=1+4d,a14=1+13d,且a2,a5,a14成等比数列,
∴(1+4d)2=(1+d)(1+13d),
解得:d=2,
∴an=1+2(n-1)=2n-1,
又∵b2=a2=3,b3=a5=9,
∴q=3,b1=1,
∴bn=3n-1;
(Ⅱ)∵$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,
∴$\frac{{c}_{1}}{{b}_{1}}$=a2,即c1=b1a2=3,
又∵$\frac{c_1}{b_1}+\frac{c_2}{b_2}+…+\frac{c_n}{b_n}={a_{n+1}}$,
当n≥2时,$\frac{{c}_{1}}{{b}_{1}}$+$\frac{{c}_{2}}{{b}_{2}}$+…+$\frac{{c}_{n-1}}{{b}_{n-1}}$=an,
∴$\frac{{c}_{n}}{{b}_{n}}$=an+1-an=2,cn=2bn=2•3n-1(n≥2),
∴cn=$\left\{\begin{array}{l}{3,}&{n=1}\\{2•{3}^{n-1},}&{n≥2}\end{array}\right.$,
∴c1+c2+…+c2014=3+2•31+2•32+…+2•32013
=3+2(31+32+…+32013)
=3+2•$\frac{3(1-{3}^{2013})}{1-3}$
=32014.
点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.
| A. | $\overrightarrow{OM}=-\frac{1}{2}\overrightarrow{OA}+\frac{3}{2}\overrightarrow{OB}$ | B. | $\overrightarrow{OM}=-\overrightarrow{OA}+2\overrightarrow{OB}$ | C. | $\overrightarrow{OM}=2\overrightarrow{OA}-\overrightarrow{OB}$ | D. | $\overrightarrow{OM}=\frac{3}{2}\overrightarrow{OA}-\frac{1}{2}\overrightarrow{OB}$ |
某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如表所示:
| 编号 位置 | ① | ② | ③ | ④ |
| 山上 | 5.0 | 3.8 | 3.6 | 3.6 |
| 山下 | 3.6 | 4.4 | 4.4 | 3.6 |
(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为$s_1^2$,$s_2^2$,根据样本数据,试估计$s_1^2$与$s_2^2$的大小关系(只需写出结论);
(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.
| A. | $\frac{1}{10}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
| A. | x1+x2+x3>0 | B. | x1+x2+x3=0 | ||
| C. | x1+x2+x3<0 | D. | x1+x2+x3的符号不能确定 |