题目内容
9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{5}}{2}$,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为$\frac{16}{3}$,其中O为坐标原点,则双曲线的焦距为( )| A. | 2$\sqrt{3}$ | B. | 2$\sqrt{5}$ | C. | 2$\sqrt{10}$ | D. | 2$\sqrt{15}$ |
分析 求出双曲线的渐近线方程,设两条渐近线的夹角为θ,由两直线的夹角公式,可得tanθ=tan∠AOB,求出F到渐近线y=$\frac{b}{a}$x的距离为b,即有|OB|=a,△OAB的面积可以表示为$\frac{1}{2}$a•atanθ,结合条件可得a,b的关系,再由离心率公式即可计算得到.
解答 解:由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,a2+b2=c2,
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
设两条渐近线的夹角为θ,
则tanθ=tan∠AOB=$\frac{\frac{b}{a}-(-\frac{b}{a})}{1+\frac{b}{a}•(-\frac{b}{a})}$=$\frac{2ab}{{a}^{2}-{b}^{2}}$,
设FB⊥OB,则F到渐近线y=$\frac{b}{a}$x的距离为d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=b,
即有|OB|=a,
则△OAB的面积可以表示为$\frac{1}{2}$•a•atanθ=$\frac{{a}^{3}b}{{a}^{2}-{b}^{2}}$=$\frac{16}{3}$,
解得a=2$\sqrt{2}$,b=$\sqrt{2}$,c=$\sqrt{10}$,即2c=2$\sqrt{10}$.
故选:C.
点评 本题考查双曲线的焦距的求法,注意运用双曲线的渐近线方程和离心率公式,以及点到直线的距离公式,考查化简整理的运算能力,属于中档题.
练习册系列答案
相关题目
19.设集合A={x|x2-x-6<0,x∈R},B={y|y=|x|-3,x∈A},则A∩B等于( )
| A. | {x|0<x<3} | B. | {x|-1<x<0} | C. | {x|-2<x<0} | D. | {x|-3<x<3} |
17.以双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{{b}^{2}}=1$(b>0)的右焦点F2为圆心,2为半径的圆与双曲线的渐近线相交,则双曲线的离心率的范围是( )
| A. | (1,$\sqrt{3}$) | B. | ($\sqrt{3}$,+∞) | C. | (1,$\sqrt{2}$) | D. | ($\sqrt{2}$,+∞) |
1.设D,E分别为线段AB,AC的中点,且$\overrightarrow{BE}$•$\overrightarrow{CD}$=0,记α为$\overrightarrow{AB}$与$\overrightarrow{AC}$的夹角,则下述判断正确的是( )
| A. | cosα的最小值为$\frac{\sqrt{2}}{2}$ | B. | cosα的最小值为$\frac{1}{3}$ | ||
| C. | sin(2α+$\frac{π}{2}$)的最小值为$\frac{8}{25}$ | D. | sin($\frac{π}{2}$-2α)的最小值为$\frac{7}{25}$ |