题目内容

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的离心率为$\frac{\sqrt{5}}{2}$,过右焦点的直线与两条渐近线分别交于A,B,且与其中一条渐近线垂直,若△OAB的面积为$\frac{16}{3}$,其中O为坐标原点,则双曲线的焦距为(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.2$\sqrt{10}$D.2$\sqrt{15}$

分析 求出双曲线的渐近线方程,设两条渐近线的夹角为θ,由两直线的夹角公式,可得tanθ=tan∠AOB,求出F到渐近线y=$\frac{b}{a}$x的距离为b,即有|OB|=a,△OAB的面积可以表示为$\frac{1}{2}$a•atanθ,结合条件可得a,b的关系,再由离心率公式即可计算得到.

解答 解:由题意可得e=$\frac{c}{a}$=$\frac{\sqrt{5}}{2}$,a2+b2=c2
双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的渐近线方程为y=±$\frac{b}{a}$x,
设两条渐近线的夹角为θ,
则tanθ=tan∠AOB=$\frac{\frac{b}{a}-(-\frac{b}{a})}{1+\frac{b}{a}•(-\frac{b}{a})}$=$\frac{2ab}{{a}^{2}-{b}^{2}}$,
设FB⊥OB,则F到渐近线y=$\frac{b}{a}$x的距离为d=$\frac{|bc|}{\sqrt{{a}^{2}+{b}^{2}}}$=b,
即有|OB|=a,
则△OAB的面积可以表示为$\frac{1}{2}$•a•atanθ=$\frac{{a}^{3}b}{{a}^{2}-{b}^{2}}$=$\frac{16}{3}$,
解得a=2$\sqrt{2}$,b=$\sqrt{2}$,c=$\sqrt{10}$,即2c=2$\sqrt{10}$.
故选:C.

点评 本题考查双曲线的焦距的求法,注意运用双曲线的渐近线方程和离心率公式,以及点到直线的距离公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网