题目内容
已知奇函数f(x)满足f(x+2)=f(x),当x∈(0,1)时,函数f(x)=2x,则f(
)=________
-
分析:由函数是奇函数得到f(-x)=-f(x)和f(x+2)=f(x)把则f(
)进行变形得到
∈(0,1)时函数f(x)=2x,求出即可.
解答:根据对数函数的图象可知
<0,且
=-log223;
奇函数f(x)满足f(x+2)=f(x)和f(-x)=-f(x)
则f(
)=f(-log223)=-f(log223)=-f(log223-4)=-f(
),
因为
∈(0,1)=-
=-
故答案为-
点评:考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.
分析:由函数是奇函数得到f(-x)=-f(x)和f(x+2)=f(x)把则f(
解答:根据对数函数的图象可知
奇函数f(x)满足f(x+2)=f(x)和f(-x)=-f(x)
则f(
因为
故答案为-
点评:考查学生应用函数奇偶性的能力,函数的周期性的掌握能力,以及运用对数的运算性质能力.
练习册系列答案
相关题目