题目内容
已知函数,若对任意实数b,总存在实数,使得成立,则实数a的取值范围是 .
已知关于的不等式的解集为.
(1)求实数的值;
(2)解关于的不等式:(为常数)
已知圆与轴交于两点,是圆上的动点,直线与分别与轴交于两点.
(1)若时,求以为直径圆的面积;
(2)当点在圆上运动时,问:以为直径的圆是否过定点?如果过定点,求出定点坐标;如果不过定点,说明理由.
过点的直线,将圆形区域分两部分,使得这两部分的面积之差最大,则该直线的方程为 .
已知是坐标原点,点,若点为平面区域上的一个动点,则的取值范围是( )
(A)[-1,0] (B)[0,1] (C)[0,2] (D)[-1,2]
设集合,若,则的值为 .
已知,则( )
A. B. C. D.
已知是等差数列,且,则 ( )
A.12 B.16 C.20 D.24
已知实数,设函数.
(1)证明:;
(2)若,求的取值范围.