题目内容

15.若α是第四象限角,且$cosα=\frac{3}{5}$,则tan2α=(  )
A.$-\frac{4}{3}$B.$-\frac{24}{7}$C.$\frac{24}{7}$D.$\frac{24}{25}$

分析 由已知利用同角三角函数基本关系式可求sinα,tanα,进而利用二倍角的正切函数公式即可计算得解tan2α.

解答 解:∵α是第四象限角,且$cosα=\frac{3}{5}$,
∴sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{4}{5}$,
∴tanα=$\frac{sinα}{cosα}$=-$\frac{4}{3}$,
∴tan2α=$\frac{2tanα}{1-ta{n}^{2}α}$=$\frac{2×(-\frac{4}{3})}{1-(-\frac{4}{3})^{2}}$=$\frac{24}{7}$.
故选:C.

点评 本题主要考查了同角三角函数基本关系式,二倍角的正切函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网