题目内容
2.若10件产品中有2件次品,现从中任取3件,则至少有一件是次品的取法共有( )| A. | 72种 | B. | 64种 | C. | 36种 | D. | 16种 |
分析 抽到的3件产品中至少有一件次品,1件次品,2件正品,和2件次品1件正品.
解答 解:抽到的3件产品中至少有一件次品的抽法有,C82C21+C81C22=64种.
故选:B.
点评 本题考查组合知识的运用,考查学生应用数学知识解决实际问题的能力,属于基础题.
练习册系列答案
相关题目
12.现有四个函数:①y=x•sinx;②y=x•cosx;③y=x•|cosx|;④y=x•2x的图象(部分)如图,则按照从左到右的顺序,图象对应的函数序号正确的一组是( )

| A. | ①④③② | B. | ①④②③ | C. | ④①②③ | D. | ③④②① |
13.若A(xl,y1),B(x2,y2)为平面上两点,则定义A?B=x1y1+x2y2,已知点M($\sqrt{3}$,sinx),N(-1,cosx),设函数f(x)=M?N,将f(x)的图象向左平移φ(φ>0)个单位长度后,所得图象关于y轴对称,则φ的最小值为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
10.下列各式中正确的是( )
| A. | sin(arcsin$\frac{π}{3}$)=$\frac{π}{3}$ | B. | sin(arcsin$\frac{3}{π}$)=$\frac{3}{π}$ | ||
| C. | arccos(-x)=arccosx | D. | arctan(tan$\frac{2π}{3}$)=$\frac{2π}{3}$ |
14.已知f(x)=2sin(ωx+$\frac{π}{4}$),x∈R,其中ω是正实数,若函数f(x)图象上一个最高点与其相邻的一个最低点的距离为5,则ω的值是( )
| A. | $\frac{2π}{5}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{5}$ | D. | $\frac{π}{3}$ |
7.已知数列{an}是等差数列,数列{bn}是等比数列,公比为q,数列{cn}中,cn=anbn,Sn是数列{cn}前n项和,若Sm=11,S2m=7,S3m=-201(m为正偶数),则S4m的值为( )
| A. | -1601 | B. | -1801 | C. | -2001 | D. | -2201 |
8.已知x,y是实数,则“$\left\{\begin{array}{l}{x>1}\\{y>1}\end{array}\right.$”是$\left\{\begin{array}{l}{x+y>2}\\{xy>1}\end{array}\right.$的( )
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |