题目内容

10.若定义域为R的函数y=f(x),其图象是连续不断的,且存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x)是一个“λ-伴随函数”.给出下列四个关于“λ-伴随函数”的命题:①f(x)=0是常数函数中唯一一个“λ-伴随函数”;②f(x)=x+1是“λ-伴随函数”;③f(x)=2x是“λ-伴随函数”;④当λ>0时,“λ-伴随函数”f(x)在(0,λ)内至少有一个零点.所有真命题的序号为③.

分析 假设函数为λ-伴随函数,根据定义得出f(x+λ)+λf(x)=0恒成立,从而得出λ的方程,根据方程是否有解得出假设是否成立.

解答 解:对于①,假设常数函数f(x)=k为λ-伴随函数”,则k+λk=0,∴(1+λ)k=0,
∴当λ=-1或k=0.
∴任意一个常数函数都是''λ-伴随函数'',其中λ=-1.
故①错误;
对于②,假设f(x)=x+1是“λ-伴随函数”,则x+λ+1+λ(x+1)=0恒成立,
即(1+λ)x+2λ+1=0恒成立,
∴$\left\{\begin{array}{l}{1+λ=0}\\{2λ+1=0}\end{array}\right.$,无解,故f(x)=x+1不是“λ-伴随函数”,
故②错误;
对于③,假设f(x)=2x是“λ-伴随函数”,则2x+λ+λ•2x=0恒成立,
即(2λ+λ)•2x=0恒成立,
∴2λ+λ=0,
做出y=2x和y=-x的函数图象如图:

由图象可知方程2λ+λ=0有解,即f(x)=x+1是“λ-伴随函数”,
故③正确;
对于④,∵f(x)是“λ-伴随函数”,∴f(x+λ)+λf(x)=0恒成立,
∴f(λ)+λf(0)=0,
∴f(0)f(λ)+λf2(0)=0,即f(0)•f(λ)=-λ2f(0)≤0.
若f(0)≠0,则f(0)•f(λ)<0,∴f(x)在(0,λ)上至少存在一个零点,
若f(0)=0,则f(0)•f(λ)=0,则f(x)在(0,λ)上可能存在零点,也可能不存在零点.
故④错误.
故答案为③.

点评 本题考查了新定义的理解,函数恒成立问题的研究,方程根的存在性判断,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网