题目内容
【题目】如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠BCD=120°,四边形BFED是以BD为直角腰的直角梯形,DE=2BF=2,平面BFED⊥平面ABCD. (Ⅰ)求证:AD⊥平面BFED;
(Ⅱ)在线段EF上是否存在一点P,使得平面PAB与平面ADE所成的锐二面角的余弦值为
.若存在,求出点P的位置;若不存在,说明理由.![]()
【答案】解:(Ⅰ)在梯形ABCD中, ![]()
∵AB∥CD,AD=DC=CB=1,∠BCD=120°,
∴故 AB=2,
∴BD2=AB2+AD2﹣2ABADcos60°=3,
∴AB2=AD2+BD2
∴BD⊥AD,
∵平面BFED⊥平面ABCD,平面BFED∩平面ABCD=BD,
∴AD⊥平面BFED.
(Ⅱ)∵AD⊥平面BFED,∴AD⊥DE,
以D为原点,分别以DA,DE,DE为x轴,y轴,z轴建立如图所示的空间直角坐标系,
则D(0,0,0),A(1,0,0),B(0,
,0),P(0,λ,
),
=(﹣1,
,0),
=
.![]()
取平面EAD的一个法向量为
=(0,1,0),
设平面PAB的一个法向量为
=(x,y,z),
由
=0,
=0得:
,取y=1,可得
=(
).
∵二面角A﹣PD﹣C为锐二面角,平面PAB与平面ADE所成的锐二面角的余弦值为
.
∴cos<
=
=
=
,
解得λ=
,即P为线段EF的3等分点靠近点E的位置
【解析】(Ⅰ)推出AB=2,求解AB2=AD2+BD2 , 证明BD⊥AD,然后证明AD⊥平面BFED.(Ⅱ)以D为原点,分别以DA,DE,DE为x轴,y轴,z轴建立如图所示的空间直角坐标系,求出相关点的坐标,求出平面EAD的一个法向量,平面PAB的一个法向量,利用向量的数量积,转化求解即可.