题目内容
8.已知函数f(x)=$\left\{\begin{array}{l}{4|lo{g}_{2}x|,0<x<2}\\{\frac{1}{2}{x}^{2}-5x+12,x≥2}\end{array}\right.$,若存在实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则c+d=10,a+b+c+d的取值范围是(12,$\frac{25}{2}$).分析 根据图象可判断:$\frac{1}{2}$<a<1,1<b<2,2<c<4,6<d<8,二次函数的对称轴为x=5,可得c+d=10,利用f(a)=f(b),可得ab=1,a=$\frac{1}{b}$,从而a+b=$\frac{1}{b}$+b∈(2,$\frac{5}{2}$),即可求出答案
解答
解:若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>
根据图象可判断:$\frac{1}{2}$<a<1,1<b<2,2<c<4,6<d<8,
二次函数的对称轴为x=5,∴c+d=10
∵f(a)=f(b),∴-4log2a=4log2b,∴ab=1,∴a=$\frac{1}{b}$,
∴a+b=$\frac{1}{b}$+b∈(2,$\frac{5}{2}$),
∴a+b+c+d∈(12,$\frac{25}{2}$).
故答案为:10,(12,$\frac{25}{2}$).
点评 本题综合考查了函数图象的运用,求解两个图象的交点问题,运用动的观点解决,理解好题意是解题关键.
练习册系列答案
相关题目
18.已知F1,F2为双曲线$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}=1(a>0,b>0)$的左、右焦点,过点F2作此双曲线一条渐近线的垂线,垂足为M,且满足|$\overrightarrow{M{F}_{1}}$|=3|$\overrightarrow{M{F}_{2}}$|,则此双曲线的离心率是( )
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{5}$ | D. | $\frac{\sqrt{6}}{2}$ |
13.已知双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\;(a>0,b>0)$,其渐近线与圆(x-6)2+y2=16相切,则该双曲线的离心率为( )
| A. | $\frac{{\sqrt{5}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{2}$ |
20.知点A,B分别为双曲线E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两个顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则双曲线E的离心率为( )
| A. | $\sqrt{5}$ | B. | 2 | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
18.若双曲线$\frac{x^2}{m}-{y^2}=1$的实轴长为4,则此双曲线的渐近线的方程为( )
| A. | y=±4x | B. | y=±2x | C. | $y=±\frac{1}{2}x$ | D. | $y=±\frac{1}{4}x$ |