ÌâÄ¿ÄÚÈÝ
ÒÑÖª¹«±ÈΪq(0£¼q£¼1)µÄÎÞÇîµÈ±ÈÊýÁÐ{an}¸÷ÏîµÄºÍΪ9£¬ÎÞÇîµÈ±ÈÊýÁÐ{a2n}¸÷ÏîµÄºÍΪ(1)ÇóÊýÁÐ{an}µÄÊ×Ïîa1ºÍ¹«±Èq;
(2)¶Ô¸ø¶¨µÄk(k=1,2,¡,n)£¬ÉèT(k)ÊÇÊ×ÏîΪak£¬¹«²îΪ2ak-1µÄµÈ²îÊýÁУ¬ÇóÊýÁÐT(2)µÄǰ10ÏîÖ®ºÍ£»
(3)ÉèbiΪÊýÁÐT(i)µÄµÚiÏSn=b1+b2+¡+bn£¬ÇóSn£¬²¢ÇóÕýÕûÊým(m£¾1)£¬Ê¹µÃ![]()
´æÔÚÇÒ²»µÈÓÚÁã.
(×¢£ºÎÞÇîµÈ±ÈÊýÁи÷ÏîµÄºÍ¼´µ±n¡ú¡Þʱ¸ÃÎÞÇîµÈ±ÈÊýÁÐǰnÏîºÍµÄ¼«ÏÞ)
½â£º(1)ÒÀÌâÒâ¿ÉÖª£¬![]()
(2)ÓÉ(1)Öª£¬an=3¡Á(
)n-1£¬ËùÒÔÊýÁÐT(2)µÄÊ×ÏîΪt1=a2=2£¬¹«²îd=2a2-1=3£¬
S10=10¡Á2+
¡Á10¡Á9¡Á3=155.¼´ÊýÁÐT(2)µÄǰ10ÏîÖ®ºÍΪ155.
(3)bi=ai+(i-1)(2ai-1)=(2i-1)ai-(i-1)=3(2i-1)(
)i-1-(i-1)£¬
Sn=45-(18n+27)(
)n-
£¬
![]()
=
-
(
)n-
.
µ±m=2ʱ£¬![]()
=-
;µ±m£¾2ʱ£¬![]()
=0£¬ËùÒÔm=2.
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿