题目内容

13.已知函数f(x)=$\frac{\sqrt{3}}{2}$sin(x+$\frac{π}{6}$)-$\frac{1}{2}$cos(x+$\frac{π}{6}$),若存在x1,x2,x3,…,xn满足0≤x1<x2<x3<…<xn≤6π,且|f(x1)-f(x2)|+|f(x2)-f(x3)|+…$+|{f({{x_{n-1}}})-f({x_n})}|=12({n≥2,n∈{N^*}})$,则n的最小值为(  )
A.6B.10C.8D.12

分析 将函数f(x)化简,要求n的最小值,则|f(xn-1)-f(xn)|=f(x)max-f(x)min.|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+f(xn-1)-f(xn)=12,可得x的值.即可知道n的最小值.

解答 解:函数f(x)=$\frac{\sqrt{3}}{2}$sin(x+$\frac{π}{6}$)-$\frac{1}{2}$cos(x+$\frac{π}{6}$)
化简可得:f(x)=sin(x+$\frac{π}{6}$-$\frac{π}{6}$)=sinx.
∴|f(xn-1)-f(xn)|=f(x)max-f(x)min=2.
则|f(x1)-f(x2)|+|f(x2)-f(x3)|+…+f(xn-1)-f(xn)=12的n最小,
须取x的区分别为:x1=0,x2=$\frac{π}{2}$,${x}_{3}=\frac{3π}{2}$,${x}_{4}=\frac{5π}{2}$,${x}_{5}=\frac{7π}{2}$,${x}_{6}=\frac{9π}{2}$,${x}_{7}=\frac{11π}{2}$,x8=6π.
则n的最小值为8.
故选C.

点评 本题主要考查三角函数的图象和性质,利用三角函数公式将函数进行化简是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网