题目内容
已知函数f(x)对任意x∈R都有f(x+6)+f(x)=2f(3),y=f(x-1)的图象关于点(1,0)对称,且f(4)=4,则f(2012)=( )
A.0 B.-4
C.-8 D.-16
B
[解析] 由y=f(x-1)的图象关于点(1,0)对称可知,y=f(x)的图象关于点(0,0)对称,即为奇函数.令x=-3可知,f(3)+f(-3)=2f(3),进而f(-3)=f(3),
又f(-3)=-f(3),可知f(3)=0,所以f(6+x)+f(x)=0,可知f(x)是一个周期为12的周期函数,所以f(2012)=f(168×12-4)=f(-4)=-f(4)=-4,故选B.
练习册系列答案
相关题目