题目内容
已知椭圆的右焦点为,设A,B为椭圆上关于原点对称的两点,AF的中点为M,BF的中点为N,原点O在以线段MN为直径的圆上.若直线AB的斜率k满足,则椭圆离心率的取值范围为 .
已知集合,.
(1)当时,求;.
(2)若,求实数的取值范围.
(本小题满分12分)
已知,,直线.
(1)函数在处的切线与直线平行,求实数的值;
(2)若至少存在一个使成立,求实数的取值范围;
(3)设,当时的图象恒在直线的上方,求的最大值.
已知椭圆:的离心率为,其中左焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线与椭圆交于不同的两点,且线段的中点在圆
上,求的值.
实数,,,则实数的大小关系为 .
已知函数的最大值为3,函数的图象上相邻两对称轴间的距离为,且.
(1)求函数的解析式;
(2)将的图象向左平移个单位,再向下平移1个单位后得到函数的图象,试判断的奇偶性,并求出在R上的单调递增区间.
已知函数,.
(1)若,求函数的极值;
(2)设函数,求函数的单调区间;
(3)若在上存在一点,使得成立,求的取值范围.
如图,点是线段的中点,,且,则
A. B. C. D.
设双曲线的右焦点为,过点作与轴垂直的直线交两渐近线于、两点,与双曲线的其中一个交点为,设坐标原点为,若且,则该双曲线的离心率为( )