题目内容

已知{an}为等差数列,Sn为其前n项和,且2Sn=an+2n2(n∈N*).
(1)求an,Sn
(2)若ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,设Tn=a1b1+a2b2+a3b3+…+anbn,求Tn
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件求出a1=2,a2=4,从而得到公差d=a2-a1=2,由此能求出an,Sn
(2)由ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,求出k=4,从而得到anbn=
32
3
n•(
3
2
)n
,由此利用错位相减法能求出Tn
解答: 解:(1)∵{an}为等差数列,且2Sn=an+2n2(n∈N*),设公差为d,
当n=1时,2S1=2a1=a1+2,解得a1=2,
当n=2时,2(2+a2)=a2+2×4,解得a2=4,
∴d=a2-a1=4-2=2,
∴an=2+2(n-1)=2n,
Sn=
n(2+2n)
2
=n(n+1).
(2)∵ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,
a2k-22=aka2k+1
∴4(2k-2)2=2k•2(2k+1),
整理,得2k2-9k+4=0,
解得k=4或k=
1
2
(舍),
∴a4,a6,a9成等比数列,且q=
a6
a4
=
3
2

bn=b1qn-1=8(
3
2
n-1
∴anbn=2n•8(
3
2
n-1=
32
3
n•(
3
2
)n

∵Tn=a1b1+a2b2+a3b3+…+anbn
Tn=
32
3
[1×
3
2
+2×(
3
2
)2
+3×(
3
2
)3
+…+n•(
3
2
)n
],①
3
2
Tn
=
32
3
[1×(
3
2
)2
+2×(
3
2
)3
+3×(
3
2
)4
+…+n•(
3
2
)n+1
],②
①-②,得-
1
2
Tn
=
32
3
[
3
2
+(
3
2
2+(
3
2
3+…+(
3
2
n-n•(
3
2
n+1]
=
32
3
×[
3
2
[1-(
3
2
)n]
1-
3
2
-n•(
3
2
n+1]
=-32-16(n-2)•(
3
2
)n

∴Tn=64+32(n-2)•(
3
2
)n
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网