题目内容
已知{an}为等差数列,Sn为其前n项和,且2Sn=an+2n2(n∈N*).
(1)求an,Sn;
(2)若ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,设Tn=a1b1+a2b2+a3b3+…+anbn,求Tn.
(1)求an,Sn;
(2)若ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,设Tn=a1b1+a2b2+a3b3+…+anbn,求Tn.
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件求出a1=2,a2=4,从而得到公差d=a2-a1=2,由此能求出an,Sn.
(2)由ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,求出k=4,从而得到anbn=
n•(
)n,由此利用错位相减法能求出Tn.
(2)由ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,求出k=4,从而得到anbn=
| 32 |
| 3 |
| 3 |
| 2 |
解答:
解:(1)∵{an}为等差数列,且2Sn=an+2n2(n∈N*),设公差为d,
当n=1时,2S1=2a1=a1+2,解得a1=2,
当n=2时,2(2+a2)=a2+2×4,解得a2=4,
∴d=a2-a1=4-2=2,
∴an=2+2(n-1)=2n,
Sn=
=n(n+1).
(2)∵ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,
∴a2k-22=ak•a2k+1,
∴4(2k-2)2=2k•2(2k+1),
整理,得2k2-9k+4=0,
解得k=4或k=
(舍),
∴a4,a6,a9成等比数列,且q=
=
.
∴bn=b1•qn-1=8(
)n-1,
∴anbn=2n•8(
)n-1=
n•(
)n,
∵Tn=a1b1+a2b2+a3b3+…+anbn,
∴Tn=
[1×
+2×(
)2+3×(
)3+…+n•(
)n],①
Tn=
[1×(
)2+2×(
)3+3×(
)4+…+n•(
)n+1],②
①-②,得-
Tn=
[
+(
)2+(
)3+…+(
)n-n•(
)n+1]
=
×[
-n•(
)n+1]
=-32-16(n-2)•(
)n,
∴Tn=64+32(n-2)•(
)n.
当n=1时,2S1=2a1=a1+2,解得a1=2,
当n=2时,2(2+a2)=a2+2×4,解得a2=4,
∴d=a2-a1=4-2=2,
∴an=2+2(n-1)=2n,
Sn=
| n(2+2n) |
| 2 |
(2)∵ak,a2k-2,a2k+1(k∈N?)是等比数列{bn}的前三项,
∴a2k-22=ak•a2k+1,
∴4(2k-2)2=2k•2(2k+1),
整理,得2k2-9k+4=0,
解得k=4或k=
| 1 |
| 2 |
∴a4,a6,a9成等比数列,且q=
| a6 |
| a4 |
| 3 |
| 2 |
∴bn=b1•qn-1=8(
| 3 |
| 2 |
∴anbn=2n•8(
| 3 |
| 2 |
| 32 |
| 3 |
| 3 |
| 2 |
∵Tn=a1b1+a2b2+a3b3+…+anbn,
∴Tn=
| 32 |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 32 |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
①-②,得-
| 1 |
| 2 |
| 32 |
| 3 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
=
| 32 |
| 3 |
| ||||
1-
|
| 3 |
| 2 |
=-32-16(n-2)•(
| 3 |
| 2 |
∴Tn=64+32(n-2)•(
| 3 |
| 2 |
点评:本题考查数列的通项公式和前n项和公式的求法,是中档题,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目
函数f(x)=
sin2x+cos2x的一条对称轴方程是( )
| 3 |
A、x=-
| ||
B、x=
| ||
C、x=
| ||
D、x=
|