题目内容
8.计算:($\frac{1}{2}$)-2+log23•log3$\frac{1}{4}$=2.分析 直接利用指数、对数的运算性质化简求值.
解答 解:原式=22+log23•$\frac{{log}_{2}\frac{1}{4}}{{log}_{2}3}$
=4+log22-2=4-2=2,
故答案为:2.
点评 本题考查了指数、对数的运算性质,是基础的会考题型.
练习册系列答案
相关题目
7.《九章算术》是我国古代的优秀数学著作,在人类历史上第一次提出负数的概率,内容涉及方程、几何、数列、面积、体积的计算等多方面,书的第6卷19题:“今有竹九节,下三节容量四升,上四节容量三升.”如果竹由下往上均匀变细(各节容量成等差数列),则其余两节的容量共多少升( )
| A. | $1\frac{15}{66}$ | B. | $1\frac{3}{22}$ | C. | $2\frac{15}{66}$ | D. | $2\frac{3}{22}$ |
16.已知,焦点在x轴上的椭圆的上下顶点分别为B2、B1,经过点B2的直线l与以椭圆的中心为顶点、以B2为焦点的抛物线交于A、B两点,直线l与椭圆交于B2、C两点,且|$\overrightarrow{A{B_2}}$|=2|$\overrightarrow{B{B_2}}$|.直线l1过点B1且垂直于y轴,线段AB的中点M到直线l1的距离为$\frac{9}{4}$.设$\overrightarrow{CB}$=λ$\overrightarrow{B{B_2}}$,则实数λ的取值范围是( )
| A. | (0,3) | B. | (-$\frac{1}{2}$,2) | C. | (-$\frac{2}{3}$,4) | D. | (-$\frac{5}{9}$,3) |
3.为了了解某学校1200名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况.根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在66~79g的人数为( )
| A. | 360 | B. | 336 | C. | 300 | D. | 280 |
18.已知幂函数f(x)=xn的图象过点(8,$\frac{1}{4}$),且f(a+1)<f(2),则a的范围是( )
| A. | -3<a<1 | B. | a<-3或a>1 | C. | a<1 | D. | a>1 |