题目内容
6.集合A={y|y=2x},B=|x|y=lg(2x-1)},则A∩B=( )| A. | {y|y≥0} | B. | {x|x$>\frac{1}{2}$} | C. | {x|0$<x<\frac{1}{2}$} | D. | {y|y>0} |
分析 由A={y|y=2x},我们易根据指数函数的值域,计算出集合A,根据集合B={x|y=lg(2x-1)},根据对数函数定义域,我们易计算出集合B,然后根据集合的交集运算,我们易得到答案.
解答 解:∵A={y|y=2x},
∴A=(0,+∞)
又∵B={x|y=lg(2x-1)},
∴B=($\frac{1}{2}$,+∞)
∴A∩B=($\frac{1}{2}$,+∞)
故选:B
点评 本题考查的知识点是集合的交集及其运算,其中根据指数函数和对数函数的性质求出集合A,B是解答本题的关键.
练习册系列答案
相关题目
11.曲线$\left\{\begin{array}{l}x=5cosθ\\ y=4sinθ\end{array}$(θ为参数)的焦点到双曲线x2-$\frac{y^2}{2}$=1的渐近线的距离为( )
| A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $2\sqrt{2}$ | D. | $\sqrt{10}$ |
18.对于任意的平面向量$\overrightarrow a$,$\overrightarrow b$,他们的夹角为θ,定义新运算$\overrightarrow a$?$\overrightarrow b$为向量$\overrightarrow a$在向量$\overrightarrow b$上的射影,即$\overrightarrow a$?$\overrightarrow b$=$\overrightarrow a$cosθ,若$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$为平面向量,$\overrightarrow a$,$\overrightarrow c$的夹角为α,$\overrightarrow b$,$\overrightarrow c$的夹角为β,k∈R,则下列运算性质一定成立的是( )
| A. | $\overrightarrow a$?$\overrightarrow b$=$\overrightarrow b$?$\overrightarrow a$ | B. | (k$\overrightarrow a$)?$\overrightarrow b$=$\overrightarrow a$?(k$\overrightarrow b$) | C. | $\overrightarrow a$•($\overrightarrow b$?$\overrightarrow c$)=$\overrightarrow b$•($\overrightarrow a$?$\overrightarrow c$) | D. | |$\overrightarrow a$?$\overrightarrow b$|=$\frac{|\overrightarrow a•\overrightarrow b|}{\overrightarrow b}$ |
16.若sinα=-$\frac{2}{3}$,且α为第四象限角,则tanα的值等于( )
| A. | $\frac{2\sqrt{5}}{5}$ | B. | -$\frac{\sqrt{5}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | -$\frac{2\sqrt{5}}{5}$ |