题目内容
18.(1)求证:直线C1D⊥平面ACD1;
(2)试求三棱锥A1-ACD1的体积.
分析 (1)通过证明C1D⊥CD1,C1D⊥AC,说明AC与CD1是平面ACD1内的两条相交直线,利用直线与平面垂直的判定定理证明直线C1D⊥平面ACD1;
(2)求三棱锥A1-ACD1的体积.转化为三棱锥C-AA1D1的体积,求出底面面积与高,即可求解棱锥的体积.
解答
解:(1)证明:在梯形ABCD内过C点作CE⊥AD交AD于点E,
则由底面四边形ABCD是直角梯形,AB⊥AD,AB=BC=1,
以及AD=2,AA1=$\sqrt{2}$.可得:CE=1,且AC=CD=$\sqrt{2}$,AA${\;}_{1}=C{C}_{1}=\sqrt{2}$,AC⊥CD.
又由题意知CC1⊥面ABCD,从而AC⊥CC1,而CC1∩CD=C,
故AC⊥C1D.
因CD=CC1,及已知可得CDD1C1是正方形,从而C1D⊥CD1.
因C1D⊥CD1,C1D⊥AC,且AC∩CD1=C,
所以C1D⊥面ACD1.
(2)因三棱锥A1-ACD1与三棱锥C-AA1D1是相同的,故只需求三棱锥C-AA1D1的体积即可,而CE⊥AD,
且由AA1⊥面ABCD可得CE⊥AA1,又因为AD∩AA1=A,
所以有CE⊥平面ADD1A1,即CE为三棱锥C-AA1D1的高.
故V${\;}_{C-A{A}_{1}{D}_{1}}$=$\frac{1}{3}×\frac{1}{2}×A{A}_{1}×{A}_{1}{D}_{1}×CE$=$\frac{1}{3}×\frac{1}{2}×\sqrt{2}×2×1=\frac{\sqrt{2}}{3}$.
点评 本题考查空间几何体直线与平面垂直的判断与证明,几何体的体积的求法,考查逻辑推理能力以及计算能力.属于中档题.
练习册系列答案
相关题目
8.若0<x<$\frac{π}{2}$,则4x与3sinx的大小关系是( )
| A. | 4x<3sinx | B. | 4x>3sinx | C. | 4x=3sinx | D. | 与x取值有关 |
13.已知向量$\overrightarrow{a}$=(-2,0),$\overrightarrow{b}$=(1,1),则下列结论正确的是( )
| A. | $\overrightarrow{a}$•$\overrightarrow{b}$=2 | B. | $\overrightarrow{a}$∥$\overrightarrow{b}$ | C. | |$\overrightarrow{a}$|=|$\overrightarrow{b}$| | D. | $\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$) |
3.在数列{an}中,a1=$\frac{1}{2}$,an+1=1-$\frac{1}{{a}_{n}}$,则a10=( )
| A. | 2 | B. | 3 | C. | -1 | D. | $\frac{1}{2}$ |