题目内容
18.已知数列{an}满足${a_{n+1}}=\left\{\begin{array}{l}{a_n}+d,\frac{n}{k}∉{N^*}\\ q{a_n},\frac{n}{k}∈{N^*}\end{array}\right.$(k∈N*,k≥2,且q、d为常数),若{an}为等比数列,且首项为a(a≠0),则{an}的通项公式为an=a或${a_n}={({-1})^{n-1}}a$.分析 通过①若k=2,求出an=a或${a_n}={({-1})^{n-1}}a$.②若k≥3,转化求解即可.
解答 解:①若k=2,则a1=a,a2=a+d,a3=(a+d)q,a4=(a+d)q+d,
由${a_1}•{a_3}={a_2}^2$,得a+d=aq,由${a_2}•{a_4}={a_3}^2$,得(a+d)q2=(a+d)q+d,
联立两式,得$\left\{\begin{array}{l}d=0\\ q=1\end{array}\right.$或$\left\{\begin{array}{l}d=-2a\\ q=-1\end{array}\right.$,则an=a或${a_n}={({-1})^{n-1}}a$,经检验均合题意.
②若k≥3,则a1=a,a2=a+d,a3=a+2d,由${a_1}•{a_3}={a_2}^2$,得(a+d)2=a(a+2d),得d=0,则an=a,经检验适合题意.
综上①②,满足条件的{an}的通项公式为an=a或${a_n}={({-1})^{n-1}}a$.
故答案为:an=a或${a_n}={({-1})^{n-1}}a$.
点评 本题考查数列的通项公式的求法,考查计算能力.
练习册系列答案
相关题目
9.已知等差数列{an}的前n项和为sn,若a2=4,a5=7,则$s_{10}^{\;}$=( )
| A. | 12 | B. | 60 | C. | 75 | D. | 120 |
6.2017年4月1日,中共中央、国务院决定设立的国家级新区--雄安新区.雄安新区建立后,在该区某街道临近的A路口和B路口的车流量变化情况,如表所示:
(1)求前5天通过A路口车流量的平均值和通过B路口的车流量的方差,
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)
| 天数t(单位:天) | 1日 | 2日 | 3日 | 4日 | 5日 |
| A路口车流量x(百辆) | 0.2 | 0.5 | 0.8 | 0.9 | 1.1 |
| B路口车流量y(百辆) | 0.23 | 0.22 | 0.5 | 1 | 1.5 |
(2)根据表中数据我们认为这两个临近路口有较强的线性相关关系,第10日在A路口测得车流量为3百辆时,你能估计这一天B路口的车流量吗?大约是多少呢?(最后结果保留两位小数)(参考公式:$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=7}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$,)
3.已知椭圆的标准方程为$\frac{x^2}{5}+\frac{y^2}{4}=1$,F1,F2为椭圆的左右焦点,O为原点,P是椭圆在第一象限的点,则$\frac{{|{P{F_1}}|-|{P{F_2}}|}}{{|{PO}|}}$的取值范围( )
| A. | $({0,\frac{{\sqrt{5}}}{5}})$ | B. | $({0,\frac{{2\sqrt{5}}}{5}})$ | C. | $({0,\frac{{3\sqrt{5}}}{5}})$ | D. | $({0,\frac{{6\sqrt{5}}}{5}})$ |
8.若a>b>0,则下列不等式一定不成立的是( )
| A. | $\frac{1}{a}$<$\frac{1}{b}$ | B. | log2a>log2b | C. | a2+b2≤2a+2b-2 | D. | b<$\sqrt{ab}$<$\frac{a+b}{2}$<a |