题目内容
计算 .
1
若,则f(-3)的值为( )
A.2 B.8 C. D.
已知定义在上的三个函数,,,且在处取得极值.
(Ⅰ)求a的值及函数的单调区间.
(Ⅱ)求证:当时,恒有成立.
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,求二十年发放的汽车牌照总量.
3
在复数范围内,方程的解集为 .
已知a,b都是正数,求证:.
某扇形的半径为1cm,它的弧长为2cm,那么该扇形的圆心角为( )
A.2° B. 4rad C. 4° D. 2rad
已知函数f(x)=2sincos+cos.
(1)求函数f(x)的最小正周期及最值;
(2)令g(x)=f ,判断函数g(x)的奇偶性,并说明理由.
已知正项等比数列满足:,若存在两项使得,则的最小值为( )
A. B. C. D. 不存在