题目内容
若数列{cn}的通项cn=(2n-1)·
,则数列{cn}的前n项和Rn=( )
| A.1- | B.1- | C.1+ | D.1+ |
A
Rn=c1+c2+c3+…+cn,
Rn=1×
+3×
+5×
+…+(2n-1)×
,①
Rn=1×
+3×
+5×
+…+(2n-3)×
+(2n-1)×
,②
①式减②式得
Rn=
+2
-(2n-1)×
,
则
Rn=
+2×
-(2n-1)×
=
-
×
,
故Rn=1-
,故选A
Rn=1×
①式减②式得
则
故Rn=1-
练习册系列答案
相关题目