题目内容

2.已知定义在R上的可导函数f(x)的导函数为f'(x),满足f'(x)<f(x),且f(x+2)=f(-x+2),f(4)=1,则不等式f(x)<ex的解集为(  )
A.(-∞,e4B.(e4,+∞)C.(-∞,0)D.(0,+∞)

分析 构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,利用导数和已知即可得出其单调性.再利用函数的奇偶性和已知可得g(0)=1,即可得出.

解答 解:构造函数g(x)=$\frac{f(x)}{{e}^{x}}$,则g′(x)=$\frac{{f}^{′}(x)-f(x)}{{e}^{x}}$<0,∴函数g(x)在R上单调递减,
∴函数f(-x+2)=f(x+2),
∴函数关于x=2对称,
∴f(0)=f(4)=1,
原不等式等价为g(x)<1,
∵g(0)=$\frac{f(0)}{{e}^{0}}$=1.
∴g(x)<1?g(x)<g(0),
∵g(x)在R上单调递减,
∴x>0.
∴不等式f(x)<ex的解集为(0,+∞).
故选:D.

点评 本题考查了利用导数研究函数的单调性、利用函数的单调性解不等式、函数的奇偶性及对称性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网