题目内容
9.从1,2,3,4,5,6,7中任取2个不同的数,事件A=“取到的2个数之差的绝对值为2”.事件B=“取到的2个数均为奇数”,则P(B|A)=( )| A. | $\frac{3}{5}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{5}$ |
分析 先求出基本事件总数n=${C}_{7}^{2}$=21,再求出P(A)=$\frac{5}{21}$,P(AB)=$\frac{3}{21}$,由此利用条件概率计算公式能求出P(B|A).
解答 解:从1,2,3,4,5,6,7中任取2个不同的数,
基本事件总数n=${C}_{7}^{2}$=21,
事件A=“取到的2个数之差的绝对值为2”.事件B=“取到的2个数均为奇数”,
则P(A)=$\frac{5}{21}$,P(AB)=$\frac{3}{21}$,
∴P(B|A)=$\frac{P(AB)}{P(A)}$=$\frac{\frac{3}{21}}{\frac{5}{21}}$=$\frac{3}{5}$.
故选:A.
点评 本题考查概率的求法,考查古典概型、条件概率等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.
练习册系列答案
相关题目
20.如果$|x|≤\frac{π}{4}$,那么函数f(x)=-cos2x+sinx的值域是( )
| A. | $[\frac{{1-\sqrt{2}}}{2},\frac{{\sqrt{2}-1}}{2}]$ | B. | $[-\frac{{\sqrt{2}+1}}{2},\frac{{\sqrt{2}-1}}{2}]$ | C. | $[-\frac{5}{4},\frac{{\sqrt{2}+1}}{2}]$ | D. | $[-\frac{5}{4},\frac{{\sqrt{2}-1}}{2}]$ |
17.函数f(x)=$\left\{\begin{array}{l}{{a}^{x},(x<1)}\\{(a-3)x+4a,(x≥1)}\end{array}\right.$满足对任意x1≠x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则a的取值范围是( )
| A. | (0,$\frac{3}{4}$] | B. | (0,1) | C. | [3,+∞) | D. | (1,3] |
4.已知某四个家庭2015年上半年总收入x(单位:万元)与总投资y(单位:万元)的对照数据如表所示:
根据如表提供的数据,若用最小二乘法求出y关于x的线性回归方程为${\;}_{y}^{∧}$=0.7x+0.35,则m的值为( )
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | m | 4.5 |
| A. | 3 | B. | 5 | C. | 4 | D. | 6 |
1.设实数x,y满足$\left\{\begin{array}{l}x+2y-4≤0\\ x-y≥0\\ y>0.\end{array}\right.$则x-2y的最大值为( )
| A. | 2 | B. | 4 | C. | 6 | D. | 8 |
19.
如图,空间四边形OABC中,$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$,$\overrightarrow{OC}=\overrightarrow c$,点M在线段OA上,且OM=2MA,点N为BC的中点,则$\overrightarrow{MN}$=( )
| A. | $\frac{1}{2}\overrightarrow a-\frac{2}{3}\overrightarrow b+\frac{1}{2}\overrightarrow c$ | B. | $\frac{1}{2}\overrightarrow b+\frac{1}{2}\overrightarrow c-\frac{2}{3}\overrightarrow a$ | C. | $\frac{1}{2}\overrightarrow a+\frac{1}{2}\overrightarrow b-\frac{1}{2}\overrightarrow c$ | D. | $\frac{2}{3}\overrightarrow a+\frac{2}{3}\overrightarrow b-\frac{1}{2}\overrightarrow c$ |