题目内容

20.函数y=Atan(ωx+φ)(ω>0)的图象与x轴相交的两相邻点坐标(-$\frac{π}{2}$,0),($\frac{π}{6}$,0),且过点(0,-3),求此函数的解析式.

分析 根据f(x)的周期为T=$\frac{π}{ω}$=$\frac{π}{6}$-(-$\frac{π}{2}$),求出ω,再由f(x)的图象过点(0,3),($\frac{π}{6}$,0)求出A与φ的值即可.

解答 解:根据题意,f(x)的周期为
T=$\frac{π}{ω}$=$\frac{π}{6}$-(-$\frac{π}{2}$)=$\frac{2π}{3}$,
解得ω=$\frac{3}{2}$,
∴f(x)=Atan($\frac{3}{2}$x+φ);
又它的图象过点(0,3),
∴Atan($\frac{3}{2}$×0+φ)=-3,即tanφ=-$\frac{3}{A}$;
又Atan($\frac{3}{2}$×$\frac{π}{6}$+φ)=0,即$\frac{π}{4}$+φ=kπ,k∈Z,
解得φ=kπ-$\frac{π}{4}$,k∈Z;
于是解得A=3,
∴f(x)=3tan($\frac{3}{2}$x-$\frac{π}{4}$).

点评 本题考查了三角函数的图象与性质的应用问题,也考查了三角函数解析式的求法问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网