题目内容
【题目】在直角坐标系
中,曲线C的参数方程为
(
为参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
,且直线
与曲线C有两个不同的交点.
(1)求实数a的取值范围;
(2)已知M为曲线C上一点,且曲线C在点M处的切线与直线
垂直,求点M的直角坐标.
【答案】(1)
;(2)
或![]()
【解析】
(1)分别求出曲线C与直线
的直角坐标方程,由点到直线的距离公式即可得解;
(2)设点
,由题意可得
即
,结合同角三角函数的平方关系求得
或
后即可得解.
(1)消参可得曲线C的普通方程为
,可得曲线C是圆心为
,半径为
的圆,
直线
的直角坐标方程为
,
由直线
与圆C有两个交点知
,解得
;
(2)设圆C的圆心为
,由圆C的参数方程可设点
,由题知
,∴
,
又
,解得
,或
,
故点M的直角坐标为
或
.
练习册系列答案
相关题目
【题目】某外卖平台为提高外卖配送效率,针对外卖配送业务提出了两种新的配送方案,为比较两种配送方案的效率,共选取50名外卖骑手,并将他们随机分成两组,每组25人,第一组骑手用甲配送方案,第二组骑手用乙配送方案.根据骑手在相同时间内完成配送订单的数量(单位:单)绘制了如下茎叶图:
![]()
(1)根据茎叶图,求各组内25位骑手完成订单数的中位数,已知用甲配送方案的25位骑手完成订单数的平均数为52,结合中位数与平均数判断哪种配送方案的效率更高,并说明理由;
(2)设所有50名骑手在相同时间内完成订单数的平均数
,将完成订单数超过
记为“优秀”,不超过
记为“一般”,然后将骑手的对应人数填入下面列联表;
优秀 | 一般 | |
甲配送方案 | ||
乙配送方案 |
(3)根据(2)中的列联表,判断能否有
的把握认为两种配送方案的效率有差异.
附:
,其中
.
| 0.05 | 0.010 | 0.005 |
| 3.841 | 6.635 | 7.879 |