题目内容
10.已知函数f(x)=ax+b,若0<f(1)<2,-1<f(-1)<1,则2a-b的取值范围是( )| A. | (-$\frac{3}{2}$,$\frac{5}{2}$) | B. | ($\frac{3}{2}$,$\frac{5}{2}$) | C. | (-$\frac{5}{2}$,$\frac{7}{2}$) | D. | ($\frac{5}{2}$,$\frac{7}{2}$) |
分析 画出约束条件的可行域,利用目标函数的几何意义求解即可.
解答
解:函数f(x)=ax+b,若0<f(1)<2,-1<f(-1)<1,
可得:$\left\{\begin{array}{l}{0<a+b<2}\\{-1<b-a<1}\end{array}\right.$的可行域如图:
令z=2a-b,结合可行域可知:z=2a-b经过A,B两点时,z取得最值,
由$\left\{\begin{array}{l}{a+b=0}\\{b-a=1}\end{array}\right.$可得A($-\frac{1}{2}$,$\frac{1}{2}$),
由$\left\{\begin{array}{l}{a+b=2}\\{b-a=-1}\end{array}\right.$可得B($\frac{3}{2}$,$\frac{1}{2}$),
2a-b的最大值为:3-$\frac{1}{2}$=$\frac{5}{2}$,
最小值为:$-1-\frac{1}{2}$=-$\frac{3}{2}$.
因为A,B都不在可行域,所以2a-b的范围是($-\frac{3}{2}$,$\frac{5}{2}$).
故选:A.
点评 本题考查线性规划的应用,考查转化思想数形结合思想的应用.
练习册系列答案
相关题目
20.已知向量$\overrightarrow{a}$=(0,1,1),$\overrightarrow{b}$=(1,2,0),则同时与$\overrightarrow{a}$,$\overrightarrow{b}$垂直的单位向量$\overrightarrow{e}$=( )
| A. | $(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$ | B. | $(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$或$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$ | ||
| C. | $(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$ | D. | $(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{6},-\frac{{\sqrt{6}}}{6})$或$(\frac{{\sqrt{6}}}{3},-\frac{{\sqrt{6}}}{6},\frac{{\sqrt{6}}}{6})$ |
1.已知集合M={x|x2-x-2=0},N={-1,0},则M∩N=( )
| A. | {-1,0,2} | B. | {-1} | C. | {0} | D. | ∅ |
19.
2017年郴州市两会召开前夕,某网站推出两会热点大型调查,调查数据表明,民生问题是百姓最为关心的热点,参与调查者中关注此问题的约占80%,现从参与者中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示:
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
附:
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(Ⅰ)求出频率分布直方图中a的值,并求出这200人的平均年龄;
(Ⅱ)现在要从年龄较小的第1组和第2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人赠送礼品,求抽取的2人中至少有人年龄在第1组的概率;
(Ⅲ)把年龄在第1,2,3组的居民称为青少年组,年龄在第4,5组的居民称为中老年组,若选出的200人中不关注民生问题的人中老年人有10人,根据以上数据,完成以下列联表,并判断是否可以在犯错误概率不超过1%的前提下,认为关注民生问题与年龄有关?
| 关注民生 | 不关注民生 | 合计 | |
| 青少年组 | 90 | 30 | 120 |
| 中老年组 | 70 | 10 | 80 |
| 合计 | 160 | 40 | 200 |
| p(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |