题目内容
变量x,y满足约束条件
,若使z=ax+y取得最大值的最优解有无穷多个,则实数a的取值集合是( )
|
| A、{-3,0} |
| B、{3,-1} |
| C、{0,1} |
| D、{-3,0,1} |
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z=ax+y取得最大值的最优解有无穷多个,得到目标函数的对应的直线和不等式对应的边界的直线的斜率相同,解方程即可得到结论.
解答:
解:不等式对应的平面区域如图:
由z=ax+y得y=-ax+z,
若a=0时,直线y=-ax+z=z,此时取得最大值的最优解只有一个,不满足条件.
若-a>0,则直线y=-ax+z截距取得最大值时,z取的最大值,此时满足直线y=-ax+z与y=x-2平行,
此时-a=1,解得a=-1.
若-a<0,则直线y=-ax+z截距取得最大值时,z取的最大值,此时满足直线y=-ax+z与y=-3x+14平行,
此时-a=-3,解得a=3.
综上满足条件的a=3或a=-1,
故实数a的取值集合是{3,-1},
故选:B.
由z=ax+y得y=-ax+z,
若a=0时,直线y=-ax+z=z,此时取得最大值的最优解只有一个,不满足条件.
若-a>0,则直线y=-ax+z截距取得最大值时,z取的最大值,此时满足直线y=-ax+z与y=x-2平行,
此时-a=1,解得a=-1.
若-a<0,则直线y=-ax+z截距取得最大值时,z取的最大值,此时满足直线y=-ax+z与y=-3x+14平行,
此时-a=-3,解得a=3.
综上满足条件的a=3或a=-1,
故实数a的取值集合是{3,-1},
故选:B.
点评:本题主要考查线性规划的应用,利用z的几何意义,结合z=ax+y取得最大值的最优解有无穷多个,利用结合数形结合是解决本题的根据.
练习册系列答案
相关题目
下列判断错误的是( )
| A、命题“?x∈R,2x>0”的否定是“?x0∈R,2x0≤0” | ||||
| B、命题“若xy=0,则x=0”的否命题为“若xy≠0,则x≠0” | ||||
C、“sinα=
| ||||
| D、函数y=2x-3+1的图象恒过定点A(3,2) |
下列有关命题的说法正确的是( )
| A、命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0 |
| B、命题“矩形是平行四边形”的否定为真命题 |
| C、命题“若cosx=cosy,则x=y”的逆否命题为真命题 |
| D、命题“若x+y=0,则x,y互为相反数”的逆命题为真命题 |
下列说法中,正确的是( )
| A、命题“存在x∈R,x2-x>0”的否定是“对任意x∈R,x2-x<0”. |
| B、设α,β为两个不同的平面,直线l?α,则“l⊥β”是“α⊥β”成立的必要不充分条件. |
| C、命题“若a<b,则am2<bm2”的否命题是真命题. |
| D、已知x∈R,则“x>1”是“x>2”的充分不必要条件. |