题目内容
数列{an}是公差为正数的等差数列,a2、a5且是方程x2-12x+27=0的两根,数列{bn}的前n项和为Tn,且Tn=1-
bn(n∈N*),
(1)求数列{an}、{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Sn.
| 1 | 2 |
(1)求数列{an}、{bn}的通项公式;
(2)记cn=an•bn,求数列{cn}的前n项和Sn.
分析:(1)依题意,解方程x2-12x+27=0可得a2、a5,从而可得数列{an}的通项公式;由Tn=1-
bn可求得数列{bn}的通项公式;
(2)cn=an•bn,利用错位相减法可求数列{cn}的前n项和Sn.
| 1 |
| 2 |
(2)cn=an•bn,利用错位相减法可求数列{cn}的前n项和Sn.
解答:解:(1)∵等差数列{an}的公差d>0,a2、a5且是方程x2-12x+27=0的两根,
∴a2=3,a5=9.
∴d=
=2,
∴an=a2+(n-2)d=3+2(n-2)=2n-1;
又数列{bn}中,Tn=1-
bn,①
∴Tn+1=1-
bn+1,②
②-①得:
=
,又T1=1-
b1=b1,
∴b1=
,
∴数列{bn}是以
为首项,
为公比的等比数列,
∴bn=
•(
)n-1;
综上所述,an=2n-1,bn=
•(
)n-1;
(2)∵cn=an•bn=(2n-1)•
•(
)n-1,
∴Sn=a1b1+a2b2+…+anbn
=1×
+3×
×
+…+(2n-1)×
×(
)n-1,③
∴
Sn=
×
+3×
×(
)2+…+(2n-3)×
×(
)n-1+(2n-1)×
×(
)n,④
∴③-④得:
Sn=
+
[
+(
)2+(
)3+…+(
)n-1]-(2n-1)×
×(
)n,
Sn=1+2[
+(
)2+(
)3+…+(
)n-1]-(2n-1)×(
)n
=1+2×
-(2n-1)×(
)n
=2-
×(
)n-1
=2-(2n+2)×(
)n.
∴a2=3,a5=9.
∴d=
| 9-3 |
| 5-2 |
∴an=a2+(n-2)d=3+2(n-2)=2n-1;
又数列{bn}中,Tn=1-
| 1 |
| 2 |
∴Tn+1=1-
| 1 |
| 2 |
②-①得:
| bn+1 |
| bn |
| 1 |
| 3 |
| 1 |
| 2 |
∴b1=
| 2 |
| 3 |
∴数列{bn}是以
| 2 |
| 3 |
| 1 |
| 3 |
∴bn=
| 2 |
| 3 |
| 1 |
| 3 |
综上所述,an=2n-1,bn=
| 2 |
| 3 |
| 1 |
| 3 |
(2)∵cn=an•bn=(2n-1)•
| 2 |
| 3 |
| 1 |
| 3 |
∴Sn=a1b1+a2b2+…+anbn
=1×
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
∴
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
∴③-④得:
| 2 |
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 2 |
| 3 |
| 1 |
| 3 |
Sn=1+2[
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
=1+2×
| ||||
1-
|
| 1 |
| 3 |
=2-
| 2n+2 |
| 3 |
| 1 |
| 3 |
=2-(2n+2)×(
| 1 |
| 3 |
点评:本题考查数列的求和,着重考查等差数列与等比数列的通项公式,突出考查错位相减法求和,属于中档题.
练习册系列答案
相关题目