题目内容
已知函数f(x)=( x-1)2,数列{an}是公差为d的等差数列,{bn}是公比为q(q∈R且q≠1)的等比数列,若a1=f(d-1),a3=f(d+1),b1=f(q+1),b3=f(q-1).(1)求数列{an}和{bn}的通项公式;
(2)设数列{cn}的前n项和为Sn,且对一切自然数n,均有
| c1 |
| b1 |
| c2 |
| b2 |
| cn |
| bn |
| lim |
| n→∞ |
| S2n+1 |
| S2n |
分析:(Ⅰ)由题意知d2-(d-2)2=2d,解得d=2.所以an=2(n-1).再由
=q2,知
=q2=
.由此能够导出bn=3n-1.
(Ⅱ)由题设知
=a2,c1=2.所以
+
+…+
+
=an+1,
+
+…+
=an,由此能够推导出S2n+1,S2n.
| b3 |
| b1 |
| f(q+1) |
| f(q-1) |
| q2 |
| (q-2)2 |
(Ⅱ)由题设知
| c1 |
| b1 |
| c1 |
| b1 |
| c2 |
| b2 |
| cn-1 |
| bn-1 |
| cn |
| bn |
| c1 |
| b1 |
| c2 |
| b2 |
| cn-1 |
| bn-1 |
解答:解:(Ⅰ)∵a3-a1=2d,∴f(d+1)-f(d-1)=2d.
即d2-(d-2)2=2d,解得d=2.
∴a1=f(2-1)=0.∴an=2(n-1).
∵
=q2,∴
=q2=
.
∵q≠0,q≠1,∴q=-2.
又b1=f(q+1)=4,∴bn=4•(-2)n-1.
(Ⅱ)由题设知
=a2,∴c1=a2b1=8.
当n≥2时,
+
+…+
=an+1,
+
+…+
=an,
两式相减,得
=an+1-an=2.
∴cn=2bn=2×3n-1(n≥2).
∴S2n+1=c1+c2+c3+…+c2n+1=8+2(3+32+…+32n)=8+2×
=32n+1+5.
即S2n=32n+1+5-2×32n=32n+5.
∴
=
=3
即d2-(d-2)2=2d,解得d=2.
∴a1=f(2-1)=0.∴an=2(n-1).
∵
| b3 |
| b1 |
| f(q-1) |
| f(q+1) |
| (q-2)2 |
| q2 |
∵q≠0,q≠1,∴q=-2.
又b1=f(q+1)=4,∴bn=4•(-2)n-1.
(Ⅱ)由题设知
| c1 |
| b1 |
当n≥2时,
| c1 |
| b1 |
| c2 |
| b2 |
| cn |
| bn |
| c1 |
| b1 |
| c2 |
| b2 |
| cn-1 |
| bn-1 |
两式相减,得
| cn |
| bn |
∴cn=2bn=2×3n-1(n≥2).
∴S2n+1=c1+c2+c3+…+c2n+1=8+2(3+32+…+32n)=8+2×
| 32n+1-3 |
| 3 -1 |
即S2n=32n+1+5-2×32n=32n+5.
∴
| lim |
| n→∞ |
| S2n+1 |
| S2n |
| lim |
| n→∞ |
| 32n+1+5 |
| 32n+5 |
点评:本题考查数列的性质及其应用,解题时要注意公式的灵活运用,同时考查了数列的极限,属于中档题.
练习册系列答案
相关题目
已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
}的前n项和为Sn,则S2010的值为( )
| 1 |
| f(n) |
A、
| ||
B、
| ||
C、
| ||
D、
|