题目内容
设数列{an}是公差为d的等差数列,其前n项和为Sn.已知a1=1,d=2,
①求当n∈N*时,
的最小值;
②证明:由①知Sn=n2,当n∈N*时,
+
…+
<
.
①求当n∈N*时,
| Sn+64 |
| n |
②证明:由①知Sn=n2,当n∈N*时,
| 2 |
| s1s3 |
| 3 |
| s2s4 |
| n+1 |
| SnSn+2 |
| 5 |
| 16 |
分析:①通过等差数列的知识可求和,由基本不等式可得最值;②把①求到的和代入,由裂项相消法可求和,由不等式的放缩法可得结论.
解答:解:①∵a1=1,d=2,∴Sn=na1+
d=n2,
=
=n+
≥2
=16
当且仅当n=
即n=8时,上式取等号,
故
的最小值是16;
②证明:由①知Sn=n2,当n∈N*时,
=
=
[
-
],
∴
+
…+
=
[
-
+
-
+
-
+…+
-
]
=
[
+
-
-
],
∵
+
>0
∴
+
…+
<
(
+
)=
故命题得证.
| n(n-1) |
| 2 |
| Sn+64 |
| n |
| n2+64 |
| n |
| 64 |
| n |
n×
|
当且仅当n=
| 64 |
| n |
故
| Sn+64 |
| n |
②证明:由①知Sn=n2,当n∈N*时,
| n+1 |
| SnSn+2 |
| n+1 |
| n2(n+2)2 |
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
∴
| 2 |
| s1s3 |
| 3 |
| s2s4 |
| n+1 |
| SnSn+2 |
=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 32 |
| 1 |
| 22 |
| 1 |
| 42 |
| 1 |
| 32 |
| 1 |
| 52 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 22 |
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
∵
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
∴
| 2 |
| s1s3 |
| 3 |
| s2s4 |
| n+1 |
| SnSn+2 |
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 22 |
| 5 |
| 16 |
故命题得证.
点评:本题为数列和基本不等式的结合,涉及裂项相消法求和,属中档题.
练习册系列答案
相关题目