题目内容
设数列{an}是公差为d的等差数列,其前n项和为Sn,已知a4=7,a7-a2=10.
(1)求数列{an}的通项an及前n项和为Sn;
(2)求证:
+
+…+
<
(n∈N*).
(1)求数列{an}的通项an及前n项和为Sn;
(2)求证:
| 2 |
| S1S3 |
| 3 |
| S2S4 |
| n+1 |
| SnSn+2 |
| 5 |
| 16 |
分析:(1)利用等差数列的通项公式即可得出a1,d.进而得到an,Sn;
(2)利用“裂项求和”和放缩法即可得出.
(2)利用“裂项求和”和放缩法即可得出.
解答:解:(1)由题意可得
,解得a1=1,d=2.
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
∴Sn=
=n2.
(2)∵
=
=
[
-
].
∴
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)]
=
[1+
-
-
]
<
×
=
.
|
∴an=a1+(n-1)d=1+2(n-1)=2n-1.
∴Sn=
| 1×(1+2n-1) |
| 2 |
(2)∵
| n+1 |
| SnSn+2 |
| n+1 |
| n2•(n+2)2 |
| 1 |
| 4 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
∴
| 2 |
| S1S3 |
| 3 |
| S2S4 |
| n+1 |
| SnSn+2 |
| 1 |
| 4 |
| 1 |
| 32 |
| 1 |
| 22 |
| 1 |
| 42 |
| 1 |
| 32 |
| 1 |
| 52 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
=
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| (n+1)2 |
| 1 |
| (n+2)2 |
<
| 1 |
| 4 |
| 5 |
| 4 |
| 5 |
| 16 |
点评:熟练掌握等差数列的通项公式及其前n项和公式、“裂项求和”和“放缩法”等是解题的关键.
练习册系列答案
相关题目