题目内容

1.已知点P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),P5(x5,y5),P6(x6,y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为(  )
A.y2=4xB.y2=8xC.y2=12xD.y2=16x

分析 根据抛物线的焦半径公式代入即可求得p的值,求得抛物线方程.

解答 解:由抛物线的焦半径公式:|PF|=x+$\frac{p}{2}$,
∴|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=x1+x2+x3+x4+x5+x6+3p=36,
即24+3p=36,解得:p=4,
∴抛物线C的方程y2=8x,
故选B.

点评 本题考查抛物线的焦半径公式,考查计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网